

1
venticool
the platform for resilient ventilative cooling

Resilient Ventilative Cooling in Practice

AGENDA
- 15:00 | Introduction to resilient ventilative cooling and venticool, Hilde Breesch - KU Leuven, Belgium
- 15:10 | Ventilative cooling components: an overview, Peter Holzer - Operating Agent EBC Annex 80, Institute of Building Research \& Innovation, Austria
- 15:25 | Application of louvres to support ventilative cooling, Ivan Pollet - Renson, Belgium
- 15:40 | Questions \& Answers
- 15:50 | Examples of air flow enhancing and natural cooling components, Nick Hopper - Monodraught, United Kingdom
- 16:05 | Controlled windows for ventilative cooling, Peter Foldbjerg - Velux, Denmark
- 16:20 | Ventilative cooling integrated design, Jannick Roth - WindowMaster, Denmark
- 16:35 | Questions \& Answers
- 16:45 | End of webinar

If you can't hear the webinar sound

Make sure that Audio Connection is on by clicking on Audio \& Video / Speaker and Microphone Settings

O Cisco Webex Events © Event info Hide menu bar
File Edit View Participant Event Help
Switch Audio

Music mode
Ctri + Shift + M

- Unmute temporarily by holding Spacebar

Settings	
Speaker	
Speakers/Headphones (Realtek... \downarrow	Test
Output level	
Output volume -	
Microphone	
Microphone Array (Realtek(R) A... \downarrow	Test
Input level $\quad 1 \begin{array}{llllll}\text { l } \\ \text { l }\end{array}$	
Input volume	
\square Automatically adjust volume	
Sync mute button status on microphone device	
\square Music mode ©	

3

How to ask questions during the webinar
Locate the Q\&A box
Select All Panelists I Type your quest

$$
\text { Q\&A }
$$

All (0)

Note: Please DO NOT use the chat box to ask your questions!
\times

Ask: All Panelists

venticool platform (www.venticool.eu)

- IEA EBC Annex 80 Resilient Cooling of Buildings (https://annex80.ieaebc.org/)
Organized by:
With support from: - IEA-EBC Annex 62 Ventilative Cooling (https://venticool.eu/annex-62home/)
- the Air Infiltration and Ventilation Centre (www.aivc.org)

NOTES:

- The webinar will be recorded and published at www.venticool.eu \& www. aivc.org within a couple of days, along with the presentation slides.
- After the end of the webinar you will be redirected to our post event survey. Your feedback is valuable so take some minutes of your time to fill it in.

Resilient ventilative cooling \& venticool
 thie platform for resilient ventilative cooling

Hilde Breesch, KU Leuven Peter Wouters, INIVE

7

Context

- Heat waves: severity \& duration

Source: IEA EBC Annex 80 preliminary results

- Global energy demand cooling

Source: IEA (2018) The Future of Cooling

Ventilative cooling part of resilient cooling strategy

- Ventilative cooling performance
- prevent overheating combined with building design \& solar control
- Satisfactory performance, but fail to function in extraordinary scenarios
- Resilience = ability of building/system
- withstand disruptions
- maintain capacity to adapt, learn, transform

Ventilative cooling in standards, legislation \& energy performance calculations

- Energy performance regulations

- key market drivers
- Ventilative cooling: mature assessment thermal comfort \& ventilation losses
- Standards, legislation \& energy performance calculation need to include
- Assessment of overheating
- Assessment of resilient natural \& mechanical ventilative cooling
- Design calculation methods
- venticool's concern = international (CEN, ISO) but also national

venticool's position

- Ventilative cooling -> reduce cooling energy need
- Implementation of ventilative cooling is limited

- venticool
- Asks standards \& legislation writers: fair \& easy evaluation ventilative cooling performance
- Provides knowledge \& tools for designers to assess potential \& limitations
- Focus on resilient cooling -> stimulate uptake of ventilative cooling

Diamond partners:

NAVENTA

Gold partners:
winopw
Master

Associate partners:

[^0]

Covenant of Mayors
for Climate $\&$ Energy

REHVA
ε

Ventilative Cooling Components An Overview

Dipl. Ing. Dr. Peter Holzer
Institute of Building Research
Subtask Leader in Annex 62 Ventilative Cooling (finished)
Operating Agent in Annex 80 Resilient Cooling (ongoing)

1

A Airflow guiding ventilation components:

- Windows, doors and rooflights
- Flaps, grilles, louvres and dampers
- Terminals

Typologies of Ventialtive Cooling Components

A Airflow guiding ventilation components
B Airflow enhancing ventilation components

- Powerless ventilators
- Chimneys
- Mechanical ventilators

Typologies of Ventialtive Cooling Components

A Airflow guiding ventilation components
B Airflow enhancing ventilation components
C Passive Cooling ventilation components

- e.g. Comfort ventilators
- e.g. Evaporators
- e.g. Phase Change Materials

Typologies of Ventialtive Cooling Components

A Airflow guiding ventilation components
B Airflow enhancing ventilation components
C Passive Cooling ventilation components
D Automation components

- Actuators
- Sensors
- Controllers

Airflow guiding ventilation components

Windows, Doors and Rooflights
bottom hung (transom), top hung, side hung, pivot hung, sliding (sash)

See Ventilative Cooling Sourcebook (Annex 62)
Formula according to EN 16798

- Highly effective and cheap
- Manual use as well as automated
- Weak in case of driving rain, burglary, dust, insects and noise
- In case of uni-directional flow:
$\dot{V}=C_{d} \sqrt{\frac{2}{\rho}} \sqrt{\Delta p} A=C_{F} \sqrt{\Delta p} \quad\left(\mathrm{~m}^{3} / \mathrm{s}\right)$
Discharge Coefficient: $C_{d}=0,6 \div 0,7$
e.g.: $A=1 \mathrm{~m}^{2}, \Delta p=1 \mathrm{~Pa} \rightarrow V=3.000 \mathrm{~m}^{3} / \mathrm{h}$

Airflow guiding ventilation components

Windows, Doors and Rooflights

bottom hung (transom), top hung, side hung, pivot hung, sliding (sash)

See Ventilative Cooling Sourcebook (Annex 62)

CONTROLLED WINDOWS FOR VENTILATIVE COOLING
Peter Foldbjerg, Velux, DK

- Highly effective and cheap
- Manual use as well as automated
- Weak in case of driving rain, burglary, dust, insects and noise
- In case of uni-directional flow:
$\dot{V}=C_{d} \sqrt{\frac{2}{\rho}} \sqrt{\Delta p} A=C_{F} \sqrt{\Delta p} \quad\left(\mathrm{~m}^{3} / \mathrm{s}\right)$
Discharge Coefficient: $C_{d}=0,6 \div 0,7$
e.g.: $A=1 \mathrm{~m}^{2}, \Delta p=1 \mathrm{~Pa} \rightarrow V=3.000 \mathrm{~m}^{3} / \mathrm{h}$

Airflow guiding ventilation components

Dampers, Flaps, Louvres, Grilles

- Manual use as well as automated
- Partly protective against burglary, dust, insects and noise. Generally: the higher protective, the lower effective
- Range of C_{d}

Net geometric free area ratio $40-60 \%$
Recommended design $\Delta \mathrm{p} \quad 1-3 \mathrm{~Pa}$

Institute of

Building Research
\& Innovation ZT-GmbH

Airflow guiding ventilation components

Dampers, Flaps, Louvres, Grilles

- Range of $\mathrm{C}_{\mathrm{d}} \quad 0,2-0,7$

Net geometric free area ratio $40-60 \%$
Recommended design $\Delta \mathrm{p} \quad$ 1-3 Pa

- Manual use as well as automated
- Partly protective against burglary, dust, insects and noise. Generally: the higher protective, the lower effective

9

Airflow guiding ventilation components

Terminals

Window ventilators (trickle vents or slots), discular diffusers (disc valves)

- Regarding trickle vents: Good integration in the window, available with sound attenuation functionality, wind pressure dependent pressure drop, integrated sound damper and insect mesh. Indicative airflow of 25 to even $50 \mathrm{~m}^{3} / \mathrm{h}$ per meter at 1 Pa
- Regarding disc valves: covering airflows from $30 \mathrm{~m}^{3} / \mathrm{h}$ up to $>1.000 \mathrm{~m}^{3} / \mathrm{h}$ per unit. Indicative pressure drops of 10 to 40 Pa .

Institute of

Building Research
\& Innovation ZT-GmbH

Airflow enhancing ventilation components

Powerless ventilators

Venturi ventilators, Powerless rotating ventilators, windcatchers and supply air windscoops, Ventilation chimneys

See Ventilative Cooling Sourcebook (Annex 62)
Pictures from Passivent, HASEC, industrialairventilator, monodraught

- Regarding Venturi Vents: Indicative negative pressure drop of 4 Pa at undisturbed wind speed of $2.5 \mathrm{~m} / \mathrm{s}$, up to 60 Pa at $10 \mathrm{~m} / \mathrm{s}$.
- Regarding Powerless rotating ventilators: Indicative airflow of $800 \mathrm{~m}^{3} / \mathrm{h}$ (300 mm diameter) up to $5.000 \mathrm{~m}^{3} / \mathrm{h}$ (900 mm diameter) at undisturbed windspeed of $1,5 \mathrm{~m} / \mathrm{s}$ and very low pressure drop.
- Regarding Chimneys: Buoyancy driving force is low, equaling $\quad \Delta p=\left(\frac{1}{30}\right) \Delta T h$

11

Airflow enhancing ventilation components

Powerless ventilators

Venturi ventilators, Powerless rotating ventilators, windcatchers and supply air windscoops, Ventilation chimneys

See Ventilative Cooling Sourcebook (Annex 62) Pictures from Passivent, HASEC, industrialairventilator, monodraught

- Regarding Venturi Vents: Indicative negative pressure drop of 4 Pa at undisturbed wind speed of $2.5 \mathrm{~m} / \mathrm{s}$, up to 60 Pa at $10 \mathrm{~m} / \mathrm{s}$.
- Regarding Powerless rotating ventilators: Indicative airflow of $800 \mathrm{~m}^{3} / \mathrm{h}(300 \mathrm{~mm}$ diameter) up to 5.000 m $3 / \mathrm{h}(900 \mathrm{~mm}$
EXAMPLES OF AIR FLOW of ENHANCING AND NATURAL COOLING COMPONENTS
Nick Hopper, Monodraught, UK
is low, equaling $\Delta p=\left(\frac{1}{30}\right) \Delta T h$

Institute of

Building Research
\& Innovation ZT-GmbH

Airflow enhancing ventilation components

Mechanical ventilators

Axial, radial and tangential fans

See Ventilative Cooling Sourcebook (Annex 62) Pictures from Rosenberg and EBM Papst

- Ventilative Cooling with mechanical ventilators are highly effective as regards secured airflow.
- Ventilative Cooling with mechanical ventilators is limited by the acceptable pressure drop in the system: $1.000 \mathrm{~m}^{3} / \mathrm{h}$ at $\Delta \mathrm{T}=2 \mathrm{~K}$ carries a cooling load of roughly $0,7 \mathrm{~kW}$. An axial vent at $\Delta \mathrm{p}=300 \mathrm{~Pa}$ already consumes $0,3 \mathrm{~kW}$ and heats up the airflow already by 1 K .
- Still, Ventilative cooling with mechanical cross flow ventilation and heat recovery is a good option.

Passive cooling ventilation components

Comfort Ventilators

Ceiling Fans, Personal Fans

Pictures from lampsplus and Stadler

- Air movement is a highly effective means of personal comfort. An air speed of roughly $0,8 \mathrm{~m} / \mathrm{s}$ raises the acceptable temperature by roughly 3 K .
- Equipped with modern EC motors the effectivity outreaches the effectivity of AC systems by a factor of 2-3.
- In open floor offices there's the shortcoming of incoherent personal comfort expectations, between cool breeze and draft.

Passive cooling ventilation components

Evaporators and Phase Change Material

See Ventilative Cooling Sourcebook (Annex 62)
Picture from Transsolar at Mandai Zoo, Singapore

Passive cooling ventilation components

Evaporators and Phase Change Material

See Ventilative Cooling Sourcebook (Annex 62) Picture from Transsolar and Monodraught

- Regarding Evaporators: Good performance of indirect evaporative cooling. Upcoming interest in ambient cooling, using mist nozzles, dry mist nozzles and dry mist fans. Both systems are limited to sufficient water supply. 1 kW evaporative cooling load causes a water demand of $1,6 \mathrm{I} / \mathrm{h}$.
- Regarding PCM: Diurnal heat storage with PCM may increase the effectivity of night ventilation.

Institute of

Building Research
\& Innovation $\mathrm{ZT}-\mathrm{GmbH}$

Automation Components

Actuators

Linear actuators, chain actuators,
folding and rotating arm actuators

See Ventilative Cooling Sourcebook (Annex 62)
Pictures from ultraflexgroup and simon-rwa

- Relevant criteria in the selection of actuators are: Stroke, Force
space needed, visual appearance, water protection, insulation class

Sound emission
Durability, robustness energy consumption in operation and standby

- Linear actuators offer high stroke and force
- Chain actuators offer efficient use of space

Automation Components

Sensors

Temperature,
radiation,
humidity,
occupancy,
CO2,
air velocity

- Relevant criteria in selection of actuators are accuracy and reproducibility measurement/operating range response time linearity deviation and hysteresis stability for a period of at least 5 years no interference with other sensors stable output signal with minimal noise Low cross-sensitivity energy consumption in operation and standby

Institute of

Building Research
\& Innovation ZT-GmbH

Automation Components

Controllers

Local controllers or central controllers

- Control of Ventilative Cooling is essential and tricky, since Ventilative cooling components can be seen, heard and "felt". Weakness in control not only causes malfunction but instant annoyance.
- User information is an essential aspect of Ventilative cooling, e.g. informing the users about the actual mode of operation.
- It pays to install DDC systems, which are reely programmable, especially regarding parameter setting and derived variables
- Aspect of relevance: entrapment protection. 19

Automation Components

Controllers

Local controllers or central controllers

VENTILATIVE COOLING

 INTEGRATED DESIGNJannick Roth, WindowMaster, DK

- Control of Ventilative Cooling is essential and tricky, since Ventilative cooling components can be seen, heard and "felt". Weakness in control not only causes malfunction but instant annoyance.
- User information is an essential aspect of Ventilative cooling, e.g. informing the users about the actual mode of operation.
- It pays to install DDC systems, which are reely programmable, especially regarding parameter setting and derived variables
- Aspect of relevance: entrapment protection. 20

Further Readings and Invitation

- Annex 62 Ventilative Cooling Proceedings https://venticool.eu/annex-62publications/deliverables/
- Annex 80 Resilient Cooling Information https://annex80.iea-ebc.org/
- peter.holzer@building-research.at

Thank you

About Renson

Belgian family business

- 112 years
- Headquarters in Waregem
- Team of 1200 enthousiastic men \& women
- Core business: ventilation, sunprotection \& outdoor

Products: background ventilation versus ventilative cooling

Continuous louvre systems as façade cladding or ventilative cooling

Creating healthy spaces

Connection of products towards smart buildings > servitization

June 1t, 2021 - Webinar "Resilient Ventilative Cooling in practice

Louvres: characteristics, testing and regulation ?

Louvres: multi-functionality combined within simplicity

How to characterize ?

Testing and optimization of louvres performance

Aerodynamic and rain tightness characteristics (EN13030)

Water tightness and air flow rate

Class	Effectiveness ε	Maximum allowed penetration of simulated rain $1 \cdot h^{-1} \cdot m^{-2}$
A	1 to 0,99	0,75
B	0,989 to 0,95	3,75
C	0,949 to 0,80	15,00
D	Below 0,8	Greater than 15,00

Table 4 - Discharge loss coefficient classification

Class	Discharge loss coefficient
1	0,4 to 1,0
2	0,3 to 0,399
3	0,2 to 0,299
4	0,199 and below
NOTE The above classes also apply to entry loss coefficient.	

$$
q_{v}=C_{d} A \sqrt{\frac{2 \Delta p}{\rho}}
$$

Testing and optimization of louvres performance

Aerodynamic and rain tightness characteristics (EN13030)

Testing and optimization of louvres performance

$q_{v}=C_{d} A \sqrt{\frac{2 \Delta p}{\rho}} \quad$ Optimization based on CFD: air flow resistance \downarrow and/or water tightness \uparrow

Ventilative cooling: quick design, rules of thumb

- Air flow rate through opening: $q_{v}=C_{d} A \sqrt{\frac{2 \Delta p}{\rho}}$
- Available natural pressure difference: $\Delta \mathrm{p} \sim 1$ to 2 Pa
- Required air exchange rate:
$q_{v}=4$ to 8 volumes $/ h$
Area (m^{2}) of louvre is known
- Cooling capacity:
~ $5 \mathrm{~W} / \mathrm{m}^{2} /$ air exchange rate
- Temperature reduction during night in case of at least $10^{\circ} \mathrm{C} \Delta \mathrm{T}$ between max. indoor T and min. outdoor $\mathrm{T}: \quad \sim \mathbf{0 , 7 5}$ to $\mathbf{1 ~}^{\circ} \mathrm{C} /(\mathrm{vol} / \mathrm{h})$

Louvres: flow resistance $\uparrow+$ usage or VC potential \uparrow

Resistance

Reduction of air flow rate
~ 50\%
50\%

Guarantee on higher operation time

Fully openable windows (90°) instead of tilted ($\mathbf{1 0 \% \text {) }}$
More in use during night and absence
~ higher utilization factor

On average, net effect of louvres on air exchange rate is mostly limited

Testing and optimization of louvres performance

Sound insulation: sound reduction index Rw (EN ISO 10140 \& 717)

446/150 $446 / 225 \quad 446 / 300$

Testing and optimization of louvres performance

Burglary resistance of window openings (~ building assurances): RC class

7 Mechanical strength
$7.1 \quad$ Static loading.
VENTILATION - SUNPROTECTION - OUTDOOR
ERENSON
7.2 Dynamic loading in resistance classes 1, 2 and 3.

8 Manual burglary attempts

8 Manual burglary attempts

When tested in accordance with rEN 1630 using the tool sets and times specified in Table 6, the test specimen shall not fail at the resistonoo_laos claimed. For construction products of resistance class 1 no manual test will be carried out. The tool set A1 is intended for preparation of the test specimen.

Table 6 - Tool sets and resistance time

Resistance class	Tool set (see prEN 1630:2009, Clause 7)	Resistance time min	Maximum total test time min
1	A1	-	-
2	A2	3	15
3	A3	5	20
4	A4	10	30
5	A5	15	40
6	A6	20	50

Testing and optimization of louvres performance

Barrier load testing / Fall prevention safety (EN13049)

VENTILATION - SUNPROTECTION - OUTDOOR
Creating healthy spaces

Integration of VC louvres within EPBD regulation

Impact of VC on overheating risk and PE consumption depending on:

Belgium (residential)

- Physical free area of VC openings
($\geq 6,4 \%$ of room net floor area)
- Accessibility/burglary resistance
(location, max opening, resistance class ≥ 2)
- Control possibilities

The Netherlands (all buildings)

- Physical free area of VC openings
- Accessibility/burglary resistance
(location, max opening, resistance class ≥ 2)
- Control possibilities
- Insect-proof requirement
- Rain tightness requirement (louvre, sensor)

June 1 ${ }^{\text {st, }}, 2021$ - Webinar "Resilient Ventilative Cooling in practice"

Louvres applications in-situ

Schools (Gent, Belgium)

Passive cooling measures, no active cooling, small or no occupation in summer

VENTILATION - SUNPROTECTION - OUTDOOR

Schools (Gent, Belgium)

VENTILATION - SUNPROTECTION - OUTDOOR (antion

Student homes (Campus Diemen Zuid, The Netherlands)

Acoustic insulation for intensive ventilation and ventilative cooling

Continuous louvre systems as façade cladding and VC louvre

"Resilient Ventilative Cooling in practice"

Continuous louvre systems as façade cladding and VC louvre

International Lyceum > Luxembourg

Private houses (Belgium)

Vertical blades, integration in façade/LED-lighting

VENTILATION - SUNPROTECTION - OUTDOOR

Concept home of Renson (Waregem, Belgium)

Vertical blades, integration in façade

Privacy \leftrightarrow daylight

Louvre: movable/adjustable versus fixed

Movable/sliding louvre panels

Adjustable/orientable blades

Apartments (Weinfelden, Switzerland)

Adjustable in zones Personalization

VENTILATION - SUNPROTECTION - OUTDOOR

Combination of ventilative cooling and solar shading

Screens on roof windows

Screens and awning

Renson offices/showroom (Waregem, Belgium, 2002)

Designed 20 years ago as a living lab of bioclimatic architecture, and still contemporary

Renson offices (Waregem - Belgium, 2002)

- Controlled by BMS
- Combined with external $\mathbf{S S}+$ exposed thermal mass
- $>26^{\circ} \mathrm{C}: 5$ to 8% of ofice hours (high occupation and climate change) $>28^{\circ} \mathrm{C}:<1 \%$ of office hours

venticool
June 1st, 2021, Webinar - Resilient Ventilative Cooling in practice

Natural Ventilation

History

Windcatcher principles

Monodraught

Windcatcher principles

1. Wind movement
2. Air intake
3. Positive pressure
4. Cooler air
5. Low pressure
6. Natural buoyancy

Active Louvre

- The X-Air system has patented active-louvre technology, which enabled the louvre aperture to be modulated to several positions from closed to fully open.
- When fully open the systems has a free louvre area which is 25% greater than that of a standard unit.
- The ability to modulate or close the louvres helps with rejection of inclement weather conditions
- This helps to control winter season cold buffeting airflow at the unit face prior to fine control by the dampers inside.

Fully Opened

Windcatcher HX

0
Monodraught

Natural Cooling

Phase Change Materials

What is a PCM?
A phase-change material (PCM) is a substance which melts and solidifies at a certain temperature and in doing so is capable of storing or releasing large amounts of energy.

Using PCM's to store and release thermal energy

- During the day as warm air is passed over the PCM it absorbs thermal energy from the air to turn from a solid to a liquid, thus cooling the air.
- Over night as cooler air is passed across the PCM it releases the thermal energy it absorbed from the warm air during the day returning to its solid state.
- This provides us with a cooling cycle, using only a low energy fan that is intelligently controlled.

Monodraught

Thermal Battery

- Aluminium casing achieves excellent heat transfer from air to PCM.
- Non-flammable.
- PCM is tested to the German RAL standard - 10,000 cycles which equates to 27 years assuming 1 complete cycle a day.

How Does COOL-PHASE work?

O
 Monodraught

Performance

Per COOL-PHASE ${ }^{\circledR}$ Unit:

- Normal ventilation rate - 100 to $\mathbf{2 6 0} \mathrm{I} / \mathrm{s}$
- Maximum ventilation rate - $\mathbf{3 0 0} \mathrm{I} / \mathrm{s}$
- Total thermal energy storage $-6 / 8 / 10$ KWhrs
- Typical cooling in 24 hour period $>14 / 16 / 20$ KWhrs

Dynamic Building Simulation

Monodraught

Case Study - Bournemouth University

Location: Bournemouth
Systems: Cool-phase ${ }^{*}$

Results

The Cool-phase system monitors and records temperatures, CO2 levels and energy use.
The results below are based on data collected by the units installed in each Classroom
between $20^{\text {th }}$ April 2012 and $24^{\text {th }}$ June 2013.

Temperature Comparison

This table shows the overall average daily temperatures for each Classroom. It is clear from the table that the Cool-phase systems have kept the temperature within a very comfortable band.
This table shows the percentage of time that the internal temperature has spent at over $25^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$ during the logged period.
Air Quality
Background or atmospheric CO^{2} level is approximately 400 parts per million (ppm) and 1500ppm or above would be considered a high level. Energy Use
As shown in this table the two Cool-phase units installed in the Science Lecture Room used a combined 138.5 KWH of energy across the logged period. Assuming $0.11 £ / K W h$ that amounts to $£ 15.24$ or an average of $£ 0.25$ p a week.

Installation Examples

15

O Monodraught

Thank you!

(9)

Halifax House, High Wycombe Buckinghamshire, HP12 3SE
(C) $+44(0) 1494897700$
(윰
www.monodraught.com

Follow us on:
(in) \odot

1

THE VELUX VISION

3

THE MODEL HOME 2020 PROGRAMME

Six buildings to explore if it is possible to build healthy and sustainable buildings for the future - today. 2009-2016

VELUX GROUP PRESENTATION

POST-OCCUPANCY EVALUATIONS AND MONITORING

Continuous hourly measurements in each room:

- Temperatures
- lux
- Humidity
- CO_{2}-level
- Energy production and consumption

Position of windows and solar shading

Post Occupancy Evaluations by anthropologists

Dorfstetter family in Sunlighthouse

Olden
Haus

MODEL HOME 2020: MAISON AIR ET LUMIÈRE

It was possible to keep the indoor temperature below
the outdoor temperature during daytime

Indoor temperature was typically $5-8^{\circ} \mathrm{C}$ lower than without ventilative cooling

Control of windows by a WindowMaster control system, for overheating control parameters are indoor
 temperature and solar radiation had a bearable temperature of $26^{\circ} \mathrm{C}$ thanks to the awnings.

At night the house quickly cooled down when windows at ground floor level and roof windows were opened to create a flow of cool night air through the house

HIGH AIR FLOWS WITH VENTILATIVE COOLING CAN BE MEASURED AND CALCULATED

- Good correspondence between measured and simulated air change rate in main room in summer
- Air change rates between 10 and 23 ACH

			Wind speed m/s	Tracer Gas ACH	Simulated CONTAM
Morning	Closed door		3.6	13.4	13.9^{*}
	Open door		2.8	22.5	20.6
Afternoon	Closed door		2.3	13.2	16.6^{*}
	Open door		2.3	19.8	19.5
Morning	Closed door		3.6	13.4	14
	Open door		3.6	14.6	17.4
	Closed door		2.9	10.6	13.2
	Open door		2.8	13.1	17

Maison Aire et Lumiere, Paris, France
Each hour is categorised according to the measured temperature, following the Active House
Specification (corresponds to EN 16798-1)

Daylight factor in all main rooms: 5\% average
Almost all main rooms achieve EN 16798-1 category 1
for summer comfort

10

12

AUTOMATION IS IMPORTANT

Automated solar shading and window openings were used frequently during work-hours on weekdays, and during the night
.. e.g. at times when the families cannot be expected to be able to operate the products themselves

The indoor climate could not have been achieved with only manual products.

16

RenovActive - the 7 elements

3rd skin

Challenge: Overheating RenovActive elements

3rd skin

- Use sun screening to prevent the building from getting too hot.
- Equip windows with automated sun screening.

Envelope upgrade

- For better thermal comfort, keep your home cool in summer.
- Some glasses can protect you from sun gains
- Ensure you have well insulated windows, walls and roof so you keep the heat outside.

Hybrid breathing

- In summer, prioritise natural ventilation. In winter, combine natural and mechanical ventilation.
- Use automated crossventilation and stack effect to increase ventilation rates.

Respiratory

channel

Use automated ventilative cooling to cool the building when too hot.

- To do so efficiently, you may want to place the staircase in the center of your home, with 1 or 2 roof windows over it.

20

VELUX

Ventilation of RenovActive

- Ventilation system in RenovActive (Renson HealthBox):
- Ventilation system C (extract ventilation)
- Natural supply vents above the windows
- Extraction by fan
- Automatically controlled window openings.
- The switch between hygienic and peak ventilation is controlled based on indoor air quality and in order to prevent overheating.
- Where possible, the façade windows were sectioned with a 20 cm motorized window at top for natural ventilation without impact on privacy or risk of burglary

Renson Hybrid ventilation system + control of window opening

22

Temperature in the living room

Controlled windows for ventilative cooling

Best practice examples of residential ventilative cooling AIVC \& Venticool webinar on June 1, 2021 Peter Foldbjerg, VELUX A/S

Resilient Ventilative Cooling in practice

- VENTILATIVE COOLING INTEGRATED DESIGN

1

Our business areas

Stand-alone solutions or full integration with BMS
Provide and control

Additional control of

Sun screening

Cooling

Heating

Light

Mechanical ventilation

Cloud-based control system

How does it works?

App and dashboard

Office building in Denmark

Solution

Hybrid ventilation
Solar shading

Buildings

5

Hybrid ventilation

Lowered; capital cost, energy consumption and solar panels.

7

One year temperature data

Worst performing rooms
Requirements (DK)

External vs. internal temperatures and opening degree

Court House (Retten på Frederiksberg)
Copenhagen, Denmark

Solution and control of

Natural ventilation

Smoke ventilation

Mechanical ventilation

Solar shading

Hybrid ventilation

Heating

Layout

13

15

In line with thermal requirements

Measured indoor climate during 1 year

Statement from the Head of Administration

Jesper Christiansen:
59
"The natural ventilation works well. It is possible to control the air temperature and the employees are satisfied."

" 45% of the time we would be able to open our windows for fresh air..."

Ventilation principle

The Tower's façade delivers fresh air at low velocity

The Tower's solar chimney pulls cooler air into the building

19

Winopw
master

Ventilation principle

Fresh Air. Fresh People.

6300 MotorLink actuators to control:

- synchronization of 4 actuators on 1 parallel window, 700 parallel windows in the outer DSF
- 1450 automated air vents in the
inner facade.
- Feedback \& control position via ${ }_{20} \mathrm{BMS}$.

During the summer, spring and fall, the heat at roof level pulls air from the building up and out through the solar chimney. This facilitates natural ventilation and helps PNC maintain a comfortable indoor temperature within The Tower.

The research told us that 45\% of the time we would be able to open our windows for fresh air and essentially turn off the mechanical ventilation in the building."

IEA Annex 62 - Deliverables

Ventilative cooling case studies
Ventilative Cooling Application - buildings incl. ventilative cooling from several countries

[^1]01-06-2021 22

Questions

Jannick K. Roth
Head of Building Performance Engineering
Mobil: +4545670343
E-mail: jkr.dk@windowmaster.com

[^0]: $\star^{\star \star}{ }^{\star}$ *
 EuroWindoor

[^1]: Download: www.venticool.eu/annex-62-publications/deliverables/

