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Series of webinars in cooperation with AIVC & venticool

3. Examples of resilient cooling solutions [September 13, 15:00-16:15 CEST]
4. Case studies and policy recommendations [September 20, 15:00-16:15 CEST ]

https://annex80.iea-ebc.org/
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15:00 | Introduction to Annex 80, AIVC & yenticool 15:40 | Adsorption Chiller and its Applications
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Institute of Building Research & Innovation, AT University, TR

15:05 | Overview of resilient cooling technologies 15:55 | Questions and answers

Ongun Berk Kazanci, ICIEE/DTU, DK

15:25 Recent progress on building products for heat  16:15 | End of the webinar
mitigation
Mat Santamouris, UNSW, AU
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* Members
36 institutions from 16 countries (Americas, Europe, Asia, Australia)
* @Guests (not part of EBC yet)

Mexico, José Roberto Garcia Chavez, Metropolitan Autonomous University
Mexico City

India, Rajan Rawal, CEPT University, CARBSE

3. Reporting Phase (1 year)
June 2022 - June 2023
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“Support a transition to an environment

where affordable low energy and low carbon cooling systems
are the mainstream and preferred solutions

for cooling and overheating issues in buildings.”

A Assess benefits, potentials and performance indicators.
Provide guidance on design, performance calculation and system
integration.

B Research towards implementation of emerging technologies.
Extend boundaries of existing solutions.

C Evaluate the real performance of resilient cooling solutions.

D Develop recommendations for policy actions.

“Affordable low energy and low carbon cooling solutions,
strengthening the ability of individuals and communities
to withstand and prevent the thermal - and other -
impacts of changes in global and local climates.”




Reduce heat loads to people and indoor environments

Remove sensible heat from indoor environments

Enhance personal comfort apart from space cooling

Remove latent heat from indoor environments
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Annex 80 Publications

1. “Developing an understanding of resilient cooling: a socio-technical approach City and
Environment Interactions” (Wendy Miller et al; published in Elsevier City and Environment 2021)
https://doi.org/10.1016/j.cacint.2021.100065

2. “Resilient cooling of buildings to protect against heat waves and power outages: key concepts
and definition” (Shady Attia et al; published in Energy and Buildings 2021)
https://doi.org/10.1016/j.enbuild.2021.110869

3. “Resilient cooling strategies - a critical review and qualitative assessment” (Chen Zhang et al;
published in Energy and Buildings 2021) https://doi.org/10.1016/j.enbuild.2021.111312

4. Report of Thermal Conditions Task Group “Framework to evaluate the resilience of different
cooling technologies” (Shady Attia et al; published)
http://dx.doi.org/10.13140/RG.2.2.33998.59208
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Agenda of today’s presentation

eAnnex 80 - Subtask B summary
eRadiant cooling systems

ePersonalized Environmental Control Systems
(PECS)

eResults from preliminary simulations
eSummary and future steps




Subtask B summary

eSubtask B: Solutions

—-Develop criteria and methodology to
qualitatively and quantitavely evaluate
resiliency of existing cooling technologies

—-Assess benefits, limitations and performance
of cooling technologies with a focus on heat
waves and power outages

—-Develop guidelines for design and

implementation of resilient cooling
technologies and their combinations

Subtask B summary

*A. Reduce heat gains to indoor environments
and people indoors

—-Advanced solar shading and glazing, etc.

*B. Remove sensible heat from indoor
environments

—-High temperature cooling systems, etc.

*C. Enhance personal comfort apart from space
cooling

—Personal Environmental Control Systems
(PECS), etc.

eD. Remove latent heat from indoor
environments

-Desiccant dehumidification, etc.




Subtask B summary

eTwo major outputs so far

*Working on quantitative KPIs and technology
profile sheets
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Radiant heating and cooling systems

eLow temperature heating and high temperature
cooling principle

eHeat emission or removal by radiation and
convection (more than half by radiation)
e Mostly water-based
eFloor, wall and ceiling can be used; large surface
area for heat exchange
eThree main types
—-Radiant heating and cooling panels

—Pipes isolated from the main building structure
(radiant surface systems)

-Pipes embedded in the main building structure
(Thermally Active Building Systems - TABS)




Radiant heating and cooling systems
|

Concrete

Room Pipes

Source: Olesen, 2000

Radiant heating and cooling systems

e Integration of renewable energy resources

e Transferring peak loads to off-peak hours, and peak load
reductions

e Favorable operating conditions for heating and cooling
plants

e Smaller-capacity heating and cooling plants, and
downsized ventilation systems

* Reduced total energy use

e Less space requirement, lowered construction heights
and saved building materials

* Free use of space, no cleaning requirements, quiet
operation

e Uniform temperature distribution, reduced risk of
draught, and reduced vertical air temperature differences

¢ Initial, operational, and energy cost savings




Personalized Environmental Control Systems

ePersonalized environmental control systems -
PECS (micro-climatization systems, localized

heating and cooling systems, personalized
ventilation, etc.)

eHeating, cooling, ventilation, lighting, and
acoustics

¢ PECS condition the immediate surroundings of
occupants, creating a “personalized” space

*PECS provide individual control over different

aspects of indoor environment -> personalized
control

9
Examples of PECS
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PECS

eSeveral benefits compared to ambient (total volume)
conditioning systems

-Improved comfort, health and productivity

—-Higher satisfaction with the indoor environment,
due to

e Improvements in the immediate indoor
environment experienced by the occupants

e Possibility of personalized control
—Potential energy and cost savings

—-Increasing focus on individual differences between
people - PECS can address these individual
differences

—-Resiliency (both thermal and air quality)
un —Pandemic-proofing

11

Resiliency benefits of radiant cooling, and PECS

eRadiant cooling, by activation of thermal mass

—Possibility to absorb heat gains over a longer
period (also pre-cooling)

—-Integration of renewable energy resources

-Transferring peak loads to off-peak hours, and
peak load reductions (peak shaving and peak
shifting)

—Possibility of intermittent operation

*PECS, by creating a personalized/localized space
-Temperature setpoint relaxation
-Higher room temperatures are acceptable

—Personalized spaces can be occupied longer, and
sooner after the heat wave or power outage

12




Preliminary simulations

eSimulation study of radiant vs. all-air systems

*TABS vs. Packaged Terminal Air Conditioner (PTAC)
—-Intermittent (12-hour) and 24-hour operation

e Future weather files for Copenhagen, DK

eLightweight and heavyweight construction

e With and without power outage during heat wave

S
f Office | Corridor [ Office
128|165 ‘A'}i West o - East
I £ S % @ IQIO & 3 . £ 5 v £
\ | | o
‘ 55 ' 24 55 o

Room width = 3.6 m, window portion of the external wall = 30%

Kazanci, O.B., Shinoda, J., Olesen, B.W., Revisiting radiant cooling systems from a
13 resiliency perspective. CLIMA 2022 Conference.
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Preliminary simulations

e Operative temperature, before, during & after heat
wave and power outage

Heat Wave: Copenhagen, Contemporary, West Office
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Preliminary simulations
e Maintaining comfort conditions
Heat Wave + Power Outage
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Preliminary simulations

eExtended temperature ranges for PECS (standards
and literature)

eHours below baseline temperature at the beginning of
heatwave/power outage and hours until baseline after
heatwave/power outage

Baseline Hours maintained Hours until baseline
Temperature below baseline temperature is
(9] temperature (h) reached (h)
26 016 27 -|126
27 12 + 19 25 —-|117
28 14 + 40 24 -|108
29 15 1+ 42 23 -|106
30 17 + 64 21 41 64
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Summary and future steps

eRadiant cooling systems, and PECS have several
benefits compared to conventional systems

eThey are also promising solutions during heat waves
and power outages

e Different operation strategies are needed
e Exact benefits will depend on several factors

18




Summary and future steps

eFurther studies to quantify the exact benefits under
different boundary conditions

e Quantitative key performance indicators, both long-
and short-term

eDesign, sizing, and operation guidelines based on
detailed simulations

-System sizing issues ->should we size systems
based on future weather files?

eDevelop an approach for considering building,
systems, and occupants simultaneously

19

Thank you for your attention!

Ongun Berk Kazanci
onka@dtu.dk
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Recent progress on building products for
heat mitigation

M. Santamouris
UNSW Sydney, Australia

Challenges — Urban QOverheating and Regional Climate Change

Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

i

: . HREETIMZS__‘
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13,000 OVERHEATED CITIES b 980! L |

Global urban population exposure to extreme heat, PNAS
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Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

A. Synnefa, M. Samamuuri-s and K. Apostolakis : On'the development, optical properties
and thermal performance of cool colored coatings for the urban environment, Solar Energy
81 (2007) 488-497

Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

A. Synnefa, M. Santamouris and K. Apostolakis : On the development, optical properties
and thermal performance of cool colored coatings for the urban environment, Solar Energy
81(2007) 488-497
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Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

v

UNSW — DISER : Australian Cool Roof Study, 2022 - -

Present and Future Energy Consumption of
Buildings: Challenges and
Opportunities towards

Development in Heat Mitigation Technologies
Sydney, Brisbane, Perth
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Development in Heat Mitigation Technologies

To further decrease the surface temperature of highly reflective
colored coating phase change microcaplules containing parafins,
(phase change T = 18 C), have been incorporated in the cool
coatings. Microcapsules have a diameter of 17-20 pm and are
protected externally by a polymeric material. The optical and
thermal performance of the materials have been tested extensively




Development in Heat Mitigation Technologies

12
: (—— AT(cool-PCM)blue —#—AT(cool-PCM)black  + AT(common-cool)black
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Present and Future Energy Consumption of i iy
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The surface temperature of the black cool material with PCM
microcapsules was almost 3,8 C lower than the temperature of the
cool black and 13,3 C lower than the comman black
Also, the surface temperature of blue cool material with PCM
:  microcapsules was almost 1,8 C lower than the temperature of the
H cool blue

Development in Heat Mitigation Technologies

Thermochromic coatings
change color as a function of

/thermo
Urban Overheating and Its impact. Recent Progress on Kl the ambient temperature.

Mitigation Technologies : ,  e 2

For low outdoor
temperatures (winter), the
coatings may be dark
presenting a high
absorptivity. For higher
ambient temperatures

! (summer), the coating
. cool becomes white presenting a
b high reflectivity. Thus, when
applied on roofs or walls
they may present the best
performance all year round.

. thermo

. chromic
|

T. Karlessi, M. Santamouris, K. Apostolakis, A. Synnefa, . Livada; Development and testing
of thermochromic coatings for buildings and urban structures, Solar Energy; Volume 83,
Issue 4, April 2009, Pages 538-551 -




Development in Heat Mitigation Technologies

Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

temperature (C)

thermochromic

common

T. Karlessi, M. Santamouris; K. A is, A. a, |. Livada: Development and tesfing
of thermochromic coatings for 3 res, Solar Energy, Volume 83,
Issue 4, April 2009, Pages 5! 8 55

Present and Future Energy Consumption of
Buildings: Challenges and
Opportunities towards




Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

S. Garshasbi and M. éan
Built Environment. Recet
and Fight Urban Overheating

E‘Tﬁermochromic Technologies In the
ease the Energy Consumption
r Cells, 191 (2019) 21-32

Development in Heat Mitigation Technologies

Thermochromic mechanism of photonic crystals and
plasmonics

Thermochromic working mechanism of photonic crystals and
plasmonic is based on temperature-sensitive physical or
optical property variation of one of their components.

The outstanding feature of nano-scale TC materials
compared to their bulk counterparts is the lower rate of
photodegradation together with their adjustable
temperature-sensitive properties.

Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

Jie Feng, Kai Gao, M. S:
the Performance of Daytir
Cells, Volume 208, May 2020,11C

Development in Heat Mitigation Technologies

ingemit IR light
gthof 8-13 pm




Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

.

Jie Feng , A, Khan and M_,"S_arilt‘amouriS : The heat m'itigation potential and climatic impact of
super-cool broadband  radiative coolers on a city scale Cell Reports Physical Science, 100485
July 21, 2021
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Development in Heat Mitigation Technologies
Riyadh KSA
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Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

Ansar Khan, Laura Carlosena, Samiran Khorat, Rupali Khatun Quang-Van Doan, Jie Feng,
Mattheos Santamouris On the Winter Overcooling Penalty. qf Super Cool Photonic Materials
in Cities, Advances Solar Energy 2021

Cooling the Cities : Impact of Overheating and
Mitigation Science

Development in Heat Mitigation Technologies
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Development in Heat Mitigation Technologies

Quantum dots (QD) are very small semiconductor particles, only
several nanometers in size, so small that their optical and electronic
properties differ from those of larger particles. They are a central
theme in nanotechnology. Many types of quantum dot will emit light
of specific frequencies if electricity or light is applied to them, and
these frequencies can be precisely tuned by changing the dots' size,
shape and material, giving rise to many applications.
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Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies
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Garshasbi and M. Santamouris: Adjusting Fluorescent Properties of Quantum Dots: Moving H
Towards Best Optical Heat-rejecting Materials, Solar Energy, 2022 B

Development in Heat Mitigation Technologies
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Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

e (dSe/ZnS QDs+Silver-coated PET film
% —— CdSe/ZnS QDs
——— Solar reflection-matched film

Surface Temperature (°C)
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Garshasbi and M. Santamouris: Adjusting Fluorescent Properties of Quantum Dots: Moving
Towards Best Optical Heat-rejecting Materials, Solar Energy, 2022




Development in Heat Mitigation Technologies

Light
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Coloured Super Cool Materials A

Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

Top layer: Thermal emitter component - Thermal emitter
material with high solar transmission (300-2500 nm) and
high thermal emission (8-13 pm)

Mid layer: Solar reflective component -
layer 1: non-thermal emitter (fluorescent)
material (white/metallic or non-
white/non-metallic) with fluorescence in

Substrate (300 nm-,; ) and high light
transmission in (A, -2500 nm)

Base layer: Solar reflective component - layer 2: Reflective

Colorful surfaces for radiative cooling : Lyu Zhou, Jacob Rada, Haomin Song,3Boon Ooi, : matcnal Wlth hlgh solar I‘EﬂﬁC[lOﬂ n (AAE -2500 nm)
Zongfu Yu,C and Qiaogiang Gan
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Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

UNSW : Heat Mitigation Study, Riyadh, Saudi Arabia, 2022
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Development in Heat Mitigation Technologies
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Energy Impact of Heat Mitigation Technologies
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Energy Impact of Heat Mitigation Technologies

Reference

Cool Roofs at the City and Building Scale

Mitigation Technologies

Total Covling Consumption Residential and Total Cooling Consumption Residential and
Commercial BuiEtfings “6300 GWh Commercial Buildings : 3260 GWh

49 %

UNSW — DISER : Australian Cool Roof Study , 2022

Energy Benefits Heat Mitigation Technologies

Potential decrease of the peak hourly cooling demand
caused by the implementation of cool roofs

QOverheating and Its impact. R rogress on a4
Mitigation Technologies i

- - - -
= - L W

@

Summer Eleciriciy Demand (GW)

as 40 a5

UNSW — DISER : Australian Cool Roof Study , 2022




Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

UNSW — DISER : Australian Cool Roof Study , 2022

Urban Overheating and Its impact. Recent Progress on
Mitigation Technologies

M. Santamouris and F. Fiorito : On the Impact of Modified Urban Albedo on Ambient
Temperature and heat Related Mortality, Solar Energy 216, March 2021 493-507

Environmental and Other Benefits of Heat Mitigation Technologies

Reduction of the maximum indoor air temperature _low-rise office without roof

insulation
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MELBOURNE BRISBANE SYDNEY

Environmental and Other Benefits of Heat Mitigation Technologies

0.1 increase Decrease 0.09 C Drop 0.1 to4
albedo 17PM Temp deaths per day

An average decrease of deaths close to
19.8% per degree of temperature drop,

About 1.8% decrease of mortality per
0.1 increase of the albedo




Impact of Heat Mitigation Technologies

Urban Qverheating and Its impact. Recent
Mitigation Technologies
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ADSORPTION CHILLER
AND ITS APPLICATIONS

Assoc. Prof. Dr. Gamze GEDIZ ILIS

ggediz@gtu.edu.tr
www.iddconsultancy.com

ggedizilis@iddconsultancy.com

INTRODUCTION

The European Union has decided to
reduce CO2 emissions by 80-95%
(according to 1990 level) by 2050.

i

@

&

& Paris
Climate

5

j Agreement
/ D ﬁ_

I&DD www.iddconsultancy.com




What is GD - AdC?

https://www.youtube.com/watch?v=rLfsJ-IxZ1E&t=64s

lx0D

EFRIGERATION SYSTEMS
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MECHANICALLY
DRIVEN
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What is GD - AdC?

GD - AdC is an innovative Adsorption Chiller with innovative design

* GD - AdC uses water “H20" as a coolant.

» Adsorbers use special Silica Gel which is an environmentally
‘9 0 friendly material.

G D * Therefore, GD - AdC is a completely GREEN cooling system.

/D
l<DD

CONDENSER
WASTE .o
NS AdS-CHILLER

WORKING
PRINCIPLE

e e ¥ e )

Chilled Water
Water as = e e e e e e | Inlet

refrigerant B s e i e e s e e | Outlet

/D
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G&D Adsorption Chiller

The IDD team developed G&D, which can convert waste heat from
plants into chilled water.

The produced chilled water can be used for your cooling processes.

G&D consumes only as much electricity as a light bulb.

It is completely environmentally friendly without any CO, emissions.
» Refrigerant: Water

Waste heat water temperature: 75-105 °C

/D
I&DD

Other Adsorption Chillers in the
Market

www.iddconsultancy.com



Our Difference: Innovative Adsorber Design

Innovative adsorber design

The condenser of the chiller is placed inside the adsorbers.

Thanks to the new design of the GD — AdC, its weight and size have been

S

reduced.

Better Light Adaptation to Small

Functionality Weight different temperatures Size /D)
and flow rates

E&D www.iddconsultancy.com I&DD

Adsorber B

Adsorber A

=

Cooling Water Heating Water

Chilled Water
ﬂﬁﬁﬁiﬁiﬁﬁ Inlet

_ » Outlet

Water as
refrigerant - - -

www.iddconsultancy.com



G&D APPLICATION AREAS

www.iddconsultancy.com

G&D
ADVANTAGES

B It is maintenance free and
has a lifespan of more than
25 years.

B Low electricity consumption
(1 bulb)

B Works without noise and vibration

B Uses waste heat as power source at temperatures as low ‘d D

as 50°C E&D I&DD



G&D
ADVANTAGES

B Uses water

B Innovative condenser
embedded adsorber design

B Environmentally friendly and complies with the Paris Agreement

B Itisthe lightest and smallest size adsorption cooling system on éd D

the market. )

G0 [s0D

AdC Disadvantages

. It requires high technology and special designs to provide high vacuum.
* Not Problem for G&D ©

. It has large volume and weight compared to the traditional mechanical heat
pump system.
* Not Problem for G&D ©

‘o [ ]
. Its primary energy efficiency value is comparable to conventional heat
pumps, while having low specific cooling and heating powers (SCP/SHP) and
& coefficient of performance (COP).
* Not Problem for G&D © D
wowddconsultancy.com o — l<DD



Why Adsorption
instead of Absorpsion

Adsorpsion Absorpsion
GD-AdC Chiller
Life More Than 20 Years 7-9 Years High
q Negligible .

Maintenance Ve mes Maintenance
. . - Highly Corrosive
Innovative Silica Jel Lithium Bromide

Down to 50 °C Shots down 82 °C D

l<DD

G&D Field Works




HOW WE CAN USE G&D AS A
SOLUTION OF RESILIENT COOLING

/D
120D

RESILIENT COOLING+ G&D
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RESILIENT COOLING+ G&D

www.iddconsultancy.com

PV/PVT or Solar Panels / )

Geothermal etc... |&DD

PV-PV/T + G&D




PV-PV/T Performance Reduction

PVT panel

Hybrid
cooler =
fa¥is Applied Thermal Engineering

ELSEVIER joumal homepage: www elsevier comlocate apthermang

®
Effectiveness and constraints of using PV/Thermal collectors for =
heat-driven chillers

Stefano Aneli ™', Antonio Gagliano”, Giuseppe Marco Tina °, Gamze Gediz Ilis, Hasan Demir
' Comma, tly.

Adsorption|

Dcpermin f Mechencel Engnaring, Gebe Tockncal Umow, Tkey
Rorermes of Chomeel Exprcerng Ommantye Kot s Usversy, ey

Cooling
load

PVT+AdC achieves cooling power of around 2.3 kWh/d (0.264 kWh/kW) and even 4.5 kWh (0.515
kWh/kW) more than the PV+VCC system on typical and peak days.

With the greatest power demands (ie on the busiest days), PVT+AdC provides the highest eIectricaI/
efficiency and contributes to reducing the risks of power outages. ))

lxDD

Thank you!

Assoc. Prof. Dr. Gamze GEDIZ ILIS

Gebze Technical University
www.iddconsultancy.com
+90 532 311 30 86
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