

	webinar 2020.03.26
If you can't hear the webinar sound	d
Make sure that Audio Brodcast is on	Audio Broadcast ×
If not, click on Communicate / Audio Broadcast	<u>Communicate</u> <u>Participant</u> Even <u>t</u> <u>H</u> elp Audio Connection
If you still can't hear, run a Speaker Audio Test to make sure the correct output is selected	Audio <u>B</u> roadcast Speaker/Microphone Audio <u>T</u> est
Disclaimer: The sole responsibility for the content of presentations and information given or does not necessarily reflect the opinion of venticool /AIVC. Neither venticool/AIVC nor the p information contained therein.	ally during venticool/AIVC webinars lies with the presenters/authors. It resenters/authors are responsible for any use that may be made of $$\mathbbmm 3$$

	webinar 2020.03.26
How to ask questions during the we	binar
Locate the Q&A box Select All Panelists Type your question Click on S	Your meeting copy Event Link now here.
Ask: All Panelists	•
What is the percentage of non-compliant buildings?	Send Send
Disclaimer: The sole responsibility for the content of presentations and information does not necessarily reflect the opinion of venticool /AIVC. Neither venticool/AIV information contained therein.	on given orally during venticool/AIVC webinars lies with the presenters/authors. It $\!$

<text><text><list-item><list-item><list-item><list-item>

Tuble 6. Evaluat	and the need for meenanical associates in arring the air new.				
Ventilative co	ooling: Need for fan assistance?				
Outdoor envi	ronment	N	м	_	Y
Cold	Winter (heat recovery needed)	+			
	Summer				
Moderate					
Hot and dry	Winter				
	Summer (low temp. difference)				
Hot and	Winter				
humid	Summer (mechanical cooling needed)				
Dense urban a	area with low wind speeds (low natural driving force)				
Dense urban a	area with high night temperatures (heat island)				
High pollution	level in the area (air filtration needed)				
Noisy surroun	dings (high noise insulation needed)				
Building heat	load level	N	м		Y
Low heat	Cold (> 10°C from comfort zone) (heat recovery needed)				
loads < 20	Temperate (2-10°C from comfort zone)				
W/m ² during	Hot and dry (-2°C +2°C from comfort zone)				
occupation	Hot and humid				
Medium heat	Cold (> 10°C from comfort zone) (heat recovery needed)				
loads 20 - 30	Temperate (2-10°C from comfort zone)				
W/m ² during	Hot and dry (-2°C +2°C from comfort zone)				
occupation	Hot and humid				
High heat	Cold (> 10°C from comfort zone) (heat recovery needed)				
loads > 30	Temperate (2-10°C from comfort zone)				
W/m ² during	Hot and dry (-2°C +2°C from comfort zone)				
occuation	Hot and humid				
Thermal com	fort	N	M		Y
High requirem	ents for 95% of occupancy hours				
Normal require	ements for 90% of occupancy hours				
Normal require	ements for 80% of occupancy hours				
Requirements	Requirements adaptive to outdoor conditions				
Integration w	ith other natural cooling solutions	N	М		Y
Chilled slab by	ground water exchange				
Earth to air he	at exchanger				
Evaporative c	poling				

	Table 9. Evaluat	ion of the need of supplementary natural or mechanical	cooling	solution	s.				
	Ventilative co	oling System: Need for supplementary cooling?							
	Outdoor envi	ronment	Ν		М		Y		
	Cold (> 10°C f	rom comfort zone)							
	Temperate (2-	Temperate (2-10°C from comfort zone) Hot and dry (-2°C +2°C from comfort zone)							
	Hot and dry (-2								
	Hot and humid	1							
	Dense urban a	rea with low wind speeds (low natural driving force)							
	Dense urban a	rea with high night temperatures (heat island)							
	High pollution	level in the area							
	Noisy surround	dings							
	Building heat	load level:	N		М		Y		
	Low heat loads < 20	Cold (> 10°C from comfort zone) (heat recovery needed)							
	W/m ² during	Temperate (2-10°C from comfort zone)							
	occupation	Hot and dry (-2°C +2°C from comfort zone)							
		Hot and humid							
	Medium heat loads 20 -30	Cold (> 10°C from comfort zone) (heat recovery needed)							
	W/m ² during	Temperate (2-10°C from comfort zone)							
	occupation	Hot and dry (-2°C +2°C from comfort zone)							
		Hot and humid							
	High heat loads > 30	Cold (> 10°C from comfort zone) (heat recovery needed)							
	W/m ² during	Temperate (2-10°C from comfort zone)							
	occuation	Hot and dry (-2°C +2°C from comfort zone)							
		Hot and humid							
	Thermal com	fort:	N		М		Y		
	High requirem	ents for 95% of occupancy hours							
	Normal requirements for 95% of occupancy hours								
	Normal requirements for 80% of occupancy hours Requirements adaptive to outdoor conditions Building and system:								
					М		Y		
	Low level of ex	posed building thermal mass							
	Moderate leve	l of exposed building thermal mass							
Ciências tertétete	High level of e	xposed building thermal mass						<u>'</u>	Ciências
	High space- ar	nd use-flexibility							ULisboa

Outline

- Ventilative cooling potential tool
- How to use the tool within the design process
- Outlook and further tool developments ongoing

Ventilative cooling potential evaluation Background

The **heating balance point temperature** is the outdoor temperature at which heat gains are equal to heat losses.

When outdoor temperature falls below heating balance point temperature, heating must be provided to maintain indoor air temperatures at a defined internal heating set point temperature.

This relies on the assumption that the accumulation term of the energy balance is negligible. It is a reasonable assumption if either the thermal mass of the zone is negligibly small, or the indoor temperature is regulated to be relatively constant.

eurac research

Venticool & IEA-EBC annex 62 Webinar "Ventilative Cooling – Design and examples"

For each hour of the annual climatic record (user-input) of the given location, the algorithm splits the total number of hours when the building is occupied into the following groups:

YEAR

nov oct

aug

jul

may

apr

feb

ian

Ventilative cooling not required: when the outdoor temperature is below the heating balance point temperature no ventilative cooling can be used since heating is needed;

Potential thermal comfort by health-based ventilation: when the outdoor temperature exceeds the balance point temperature, yet falls below the lower temperature limit of the comfort zone, direct ventilation with airflow rate maintained at the minimum required for indoor air quality can provide comfort;

Potential thermal comfort by ventilative cooling: when the outdoor temperature is within the range of comfort zone temperatures, direct ventilation with increased airflow rate can provide thermal comfort

Potential thermal comfort by evaporative cooling: when the outdoor humidity is low enough to cool the air through water evaporation.

Remaining potential thermal discomfort hours: when the outdoor temperature exceeds the upper temperature limit of the comfort zone and furthermore this limit is also overtaken from the expected DEC outlet temperature.

eurac research

Venticool & IEA-EBC annex 62 Webinar "Ventilative Cooling – Design and examples"

± 1.41 a Time, [%] VC mode [0]: ventilative cooling not required
VC mode [1]: potential comfort hrs by direct ventilative cooling with minimum airflow rates
VC mode [2]: potential comfort hrs by direct ventilative cooling with increased airflow rates

Annamaria Belleri, Marta Avantaggiato, Theofanis Psomas & Per Heiselberg (2018) Evaluation tool of climate potential for ventilative cooling, International Journal of Ventilation, 17:3, 196-208, DOI: 10.1080/14733315.2017.1388627

Natural ventilation strategy		Equation					
	Single-sided ventilation – buoyancy driven	$A_{geo} = \frac{3q}{c_d \sqrt{\frac{g(T_i - T_e)H}{T_i}}}$	$\begin{array}{l} q = \text{total air flow rate through the opening [m^3/s];} \\ A_{gen} = \text{geometrical opening area [m^3];} \\ c_d = \text{discharge coefficient for the opening. For windows typically 0,6-0,7 [-];} \\ H = opening height [m]; \\ g = \text{gravitational acceleration [m/s^3];} \\ T_e = \text{raternal acceleration [m/s^3];} \\ T_i = \text{internal temperature [K]} \end{array}$				
	Single-sided ventilation – buoyancy and wind driven	$A_{geo} = \frac{2q}{c_d \sqrt{0.001 v_{ref}^2 + 0.035 * H * (T_i - T_e) + 0.01}}$	v_{ref} = wind speed at a reference height (building height) [m/s]; H = opening height [m]; T _d = external temperature [K]; T _l = internal temperature [K]				
	Stack ventilation	$A_{gco} = \frac{q \sqrt{2}}{c_d \sqrt{\frac{2gh(T_l - T_c)}{T_c}}}$	$\begin{array}{l} q = \text{total air flow rate through the opening [m3/s];} \\ c_0 = \text{discharge coefficient} \\ h = \text{height difference between midpoint height of the two openings [-];} \\ T_e = \text{external temperature [K];} \\ T_i = \text{internal temperature [K]} \end{array}$				
	Cross ventilation	$A_{geo} = \frac{q}{c_d \sqrt{\frac{\left l_{gp} \rho_k v_{eff}^* - 2P_i \right }{\rho_k}}}$	$\begin{array}{l} A = \operatorname{effective opening area of the two windows (A_1 = A_2) [m^2]; \\ c_d = \operatorname{discharge coefficient [-]; \\ C_{p1} = wind pressure coefficient of opening 1 [-]; \\ C_{p2} = wind pressure coefficient of opening 2 [-]; \\ \rho_u = \operatorname{outdoor air density [kg/m^3]; } \\ \rho_{uT} = \operatorname{outdoor air density [kg/m^3]; } \\ r_{vf} = wind speed in the reference height (normally building height) [m/s]; \\ P_i = internal pressure [Pa]. \end{array}$				

Source: IEA Annex 62 - ventilative cooling design guide

eurac research

Venticool & IEA-EBC annex 62 Webinar "Ventilative Cooling – Design and examples"

Outlook and further tool developments ongoing After release of version 1.0 (excel-based) as outcome of IEA EBC Annex 62, we have been working on: Integrating new window design features Ensuring compliance with new standard EN 16798-1: 2019 requirements User interface (simplified input data, data visualizations...) Python version including solar gains calculation through Radiance Investigating the use of a lumped capacitance model to consider building thermal mass Adapting the calculation methodology to EN ISO 52016-1 on building energy performance calculation and potential integration in the new standard on ventilative cooling systems (CEN/TC 156/WG21)

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

Implementing VC technologies in kind		IEA EBC Annex 62 The IEA project
implementing voltechnologies in kind		ventilative cooling
Cuilharma Carrilha da Crasa	Location	Lisbon,
Eng. Physics (IST), MSc (MIT), PhD (UCSD)	Building Type	Kindergarten
	Retrofit (Y/N)	Ν
Assistant Professor in Building Energy Systems	Surroundings (Urban / Rural)	Urban
University of Lisbon	Ventilative Cooling Strategy	SS and DV
	Year of Completion	2013
Kindergarten design developed by Natural Works	Floor Area (m ²)	680
	Shape Coefficient (%)	32
	Openable Area to Floor Area Ratio (%)	8
	Window to Wall Ratio (%)	18
TATA YEAR	Sensible Internal Load (W/m2)	53
	STA KPI	-
	Climate Zone (KG)	Csa
	No. of Days with $T_e \max > 25$	120
	Cooling Season Humidity	Low
	Heating Degree days (Kd)	215

Example Ventilative Cooling University Seminar Room in the UK

Professor Maria Kolokotroni Brunel University London Department of Mechanical and Aerospace Engineering Leader: Resource Efficient Future Cities Group Research Institute of Energy Futures

Location and building description

Property	Unit	Value
Occupant density	m²/p	4
Hours of occupancy	h/week	60
Sensible Internal Load	(W/m^2)	54
Window U-value	W/m^2K	1.82
Window g-value	(-)	0.43
Wall U-value	W/m^2K	0.56
Roof U-value	W/m^2K	NA
Floor U-value	W/m^2K	2.11
Q-value (from Japan)	(W/ m ²)/K	
Thermal Mass (ISO 13790)	-	Medium
Window to Wall Ratio	%	50
Air-tightness (@50 Pa)	1/h	<10 m ³ /hm ²
Shape Coefficient (1/m)	%	50%

Brunel University London

26 March 2020

CO	26 March 2020			
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg.	2014 Avg. CO ₂ 601 719 695 559 469 412 409 423 493 599 701 551 553	2015 Avg. CO ₂ 563 671 645 549 443 420 420 418 541 689 752 586 558	> 1500 ppm for more than 20 min 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Brunel University London				8

venticool AVE EBC A

3

Well Documented Case Studies of VC Annex 62 – Sub Task C

Climate of Case Studies

Variation in climate regions for all case study buildings.

(Please refer to the Koppen-Geiger climate classification system for details on KG abbreviations in column 1)

K-G	General Description	Qty	Locations
Cfb	Temperate with warm summers and no dry season	5	Cork, IE; Ernstbrunn, AT; Waregemand Ghent, BE; Verrieres-le-Buisson, FR; Bristol, UK
Cfa	Temperate, hot summers and no dry season	3	Changsha, CN; Hayama, JP
Dfb	Cold with warm summers and no dry season	3	Stavern, NO; Trondheim, NO; Innsbruck, AT
Dfc	Cold with no dry season and cold summer	1	Larvik, NO
Csa	Temperate with dry, hot summers	2	Sicily, IT; Lisbon PT

ontri	butions			AIVE EBO	
Country	Building Name	Building Type	Year	Floor Area m ²	Strategy
IE	zero2020	Office	2012 ^(R)	223	Natural
NO	Brunla Primary school	Education	2011 ^(R)	2500	Hybrid
NO	Solstad barnehage	Kindergarten	2011 ^(N)	788	Hybrid
AT	UNI Innsbruck	Education	2014 ^(R)	12,530	Hybrid
AT	wk Simonsfeld	Office	2014 ^(N)	967	Hybrid
BE	Renson	Office	2003 ^(N)	2107	Natural
BE	KU Leuven Ghent	Education	2012 ^(N)	278	Hybrid
JP	Nexus Hayama	Mixed Use	2011 ^(N)	12,836	Natural
JP	GFO Building Osaka	Office	2013 ^(N)	394,000	Hybrid
РТ	CML Kindergarden	Education	2013 ^(N)	680	Natural
UK	Bristol University	Education	2013 ^(R)	117	Mechanical
Country	Building Name	Building Type	Year	Floor Area m ²	Strategy
CN	Wanguo MOMA	Residential	2007 ^(N)	1109	Mechanical
FR	Maison Air et Lumiere	House	2011 ^(N)	173	Natural
IT	Mascalucia ZEB	House	2013 ^(N)	144	Hybrid
NO	Living Lab	Residential	2014 ^(N)	100	Hybrid 9

venticool 📶 EBC 🚑 Design Influences CIT CORK Lower Maintenance Costs **Burglary Prevention** Lower Energy Costs High Internal noise Lower Initial costs Reducing External Noise Insect Prevention Reducing Internal Reduced Privacy Reducing Solar Loads **Avoiding Rain** Elevated Air Pollution propagation Air Leakage Ingress Country Building Loads н м н м L н м м IE н R zero2020 L L L L н н м L н м NO R Brunla Primary school н L L L L н L NO R Solstad barnehage L н L L L М н L L L н L н н н м м м н AT υ UNI Innsbruck L L L L L н н н м L м L L L L wk Simonsfeld L L L AT R L н н L BE R Renson L м н L L L L L н BE υ KU Leuven Ghent н L н н н L L L м L L L н н м н н JP R Nexus Hayama м м н L L L L м М JP υ GFO Building н м L L ī. L L L L L L L L м м м м м м PT υ CML Kindergarden н L L L L L L н н н L н м L м м н L L L UK R Bristol University н н L м м υ м н L L L L L н CN Wanguo MOMA υ м м L н м L L н L L м L М FR Maison Air et Lumiere н IT R Mascalucia ZEB н м н L L L L L L М L м н н м м L н н NO υ Living Lab L L L L L

How did We Do VC?

VC	Strategies				vent the internetional plat	icool	AIV	E /EI	BC		CORK INSTITUTE OF TECHNOLOGY
	Ventilative cooling Concepts	Natural driven	Mech. Supply Driven	Mech. exhaust driven	Natural night ventilation	Mech. night ventilation	Air conditioning	Indirect Evap. Cooling	Earth to Air Heat Exch.	Phase Chang eMaterials	
	zero2020 (IE)	Х			Х						
	Brunla Primary school (NO)	Х			Х						
	Solstad barnehage (NO)	Х		Х	Х	Х					
	UNI Innsbruck (AT)	Х		Х	Х						
	wk Simonsfeld (AT)	Х		Х							
	Renson (BE)	Х			Х						
	KU Leuven Ghent (BE)	Х		Х				Х			
	Nexus Hayama (JP)	Х					Х				
	GFO Building (JP)	Х	Х	Х			Х				
	CML Kindergarden (PT)	Х			Х						
	Bristol University (UK)					Х	Х			Х	
	Wanguo MOMA (CN)		Х	Х		Х	Х				
	Maison Air et Lumiere (FR)	Х									
	Mascalucia ZEB (IT)	Х			Х				Х		
	Living Lab (NO)	Х								13	

VC Strategies

25 Wm⁻².)

- \geq 40 Wm⁻² in Norway and Belgium ≤ 10 Wm⁻² in Austria & Italy
- No. of Days with a maximum daily external temperature ≥ 25°C ranged from 10 to 120 days across all cases

Control	Strategies	Summary	Venticool	AVE EBC			
Summ	ary points						
• All NV	case studies ha	ad occupan	t interactior	n with the VC sys	stem		
• Only 6	0% of hybrid sy	ystems had	this interact	tion.			
• 69% of	 69% of the case studies had a night ventilation strategy 						
• Wind s	peed had to b	e ≤ 10m/s v	vith no rain	for night ventila	tion		
system	S						
					19		

Overhea	ating			venticool AIVE	EBC					
Preliminary results of VC performance evaluation										
Country	Building	Summer Design Values		overheating criteria	% Occ hrs above threshold		Occ hrs			
		T _e	T _{i,o}		28°C	25°C				
IE	zero2020	26.0	25.0	T _i < 28°C for 99% occ hrs	0.7	5.5	2600			
NO.1	Brunla School	25.0	26.0	T _i > 26°C	0.0	0.0	2600			
NO.2	Solstad	25.0	24.0	T _i > 26°C	0.0	0.0	2860			
AT.1	UNI Innsbruck	34.0	27.0	T _i < 26°C for 95% occ hrs	1.1	16.2	2600			
AT.2	wkSimonsfeld	34.5	24.0	T _i > 26°C zone / T > 29°C gallery	0.0	5.0	3250			
JP	Nexus Hayama	26.0	26.0	T _i < 28°C for 99% occ hrs (check)	1.0	40.0	8736			
РТ	Kindergarden	30.0	26.0	80% acceptability for 99% hr occ	2.6	16.0	3640			
							22			

Lessons Learned

venticool AVE EBC A

What Lessons did We Learn?

Lessons Learned

Design and Construction

- Detailed building simulation is important when simulating ventilative cooling strategies. Most case studies analysed highlighted the need for reliable building simulations in the design phase of a ventilative cooling system. This was considered most important when designing for hybrid ventilation strategies where multiple mechanical systems need harmonization.
- Some studies also said that simulating the window opening in detail was important.
- Customisation may be an important factor when designing a ventilative cooling system. In order to ventilate certain buildings it may be necessary to design custom components. Some case studies highlighted the need to have custom design systems that were specific to country regulations and the use of a building or space.

23

Lessons Learned

Design and Construction

- Some consideration should also be given to the clients expectations around specific issues like rain ingress and insect prevention.
- Ventilative cooling systems were considered cost-effective and energy efficient in design by most case studies, but particularly with naturally ventilated systems. It was indicated that designing with the integration of manual operation and control was important, particularly in a domestic setting.

venticool AVE EBC A

Lessons Learned

venticool AWE EBC 🜆

Operation

- VC in operation is generally a good option. Case studies comment on the reduction of overheating and improvement of comfort conditions in the buildings that used outside air. However correct maintenance and calibration of the systems is integral to maintaining performance.
- Some case studies highlighted the need to **exploit the outside air more with lower external air temperature control limits** during typical and night-time operation.
- Others suggested that **exploiting the thermal mass of a building was key.** However it was noted that care must be taken with considering these low temperatures as some case studies, particularly in cold climates observed more incidences of overcooling than overheating.

CIT CORK

Dissemination

- A summary document also available
 - Overview with key data distilled into important findings
 - Key lessons learned
 - Recommendations

What Were the Building Characteristics?

EBC 🔊

Design Simulat				
Scope Development	Concept Design	Detailed Design	Performance Analysis	
IE CIBSE Guide A	CIBSE Admittance	IES Apache /Macro	TRNSYS / PHPP / R	
NO NS 3700	SIMIEN	Windmaster/SIMIEN	IDA Ice	
NO NS 3700	SIMIEN	Windmaster / SIMIEN	IDA Ice	
РНРР	Dynbil	TRNSYS	TRNSYS	
TAS 9.2	TAS 9.2	TAS 9.2	РНРР	
-	CAPSOL	-	-	
RT2005 F	VELUX Daylight Vis.	Bsim (DK)	RT2012	
РНРР	PHPP	EnergyPlus + GenOpt	РНРР	
CASBEE	BEST/CFD/STREAM	CFD / STREAM		
EnergyPlus	EnergyPlus	EnergyPlus	EnergyPlus	
CIBSE Guide A	EFA / CIBSE TM 52	IES Apache	IES Apache	
-	SIMIEN	-	IDA Ice	
UK & IE – IES ar NO – IDA IO	nd CIBSE CE	IT, AT & IE – PHPP PT - EnergyPlus		
			37	