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Background

* The current development towards nearly-zero energy
buildings have lead to an increased need for cooling — not
only in summer but all year.

* Elevated temperature levels are the most reported
problem in post occupancy studies, even in residences in
the “heating season”

* There has been a large focus on reducing the heating need
in buildings. There is also a need to address the cooling
need and to develop more energy-efficient cooling
solutions
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Why have we experienced an overheating problem’

It is not possible to reach goals through more:

* Envelope insulation, Building airtightness, Ventilation heat
recovery,

Which are robust technologies without user interaction

* New measures needs to be included:

« Demand controlled ventilation, Shading for solar energy or
daylighting control, Lighting control, Window opening

All technologies:
» Where performance is very sensitive to control
» Which involve different degree of user interaction

« Whose function and performance are difficult for users to
understand
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Ventilative Cooling in Offices

* Always a cooling need during occupied hours

* Cooling is not a new technology, but the need for cooling
is increasing and more efficient systems have to be
developed to fulfill future energy requirements

* Application of the free cooling potential of outdoor air is
widely used in mechanical ventilation systems, while the
use in natural and hybrid ventilation system is still limited
in many countries
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Energy in Buildings and
Communities Programme

Challenges in a Cold Climate
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Energy in Buildings and
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Diffuse ceiling air distribution patterns
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Energy in Buildings and
Communities Programme

Opening types

Rockfon ceiling

High local entrainment

Ecophon ceiling

High local entrainment

Fully diffuse ceiling
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Low local entrainment
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Six Different Air Distribution Systems
-Tested in the same geometry and with the same load
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Energy in Buildings and
Communities Programme
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Definition of Ventilative Cooling

* Ventilative Cooling is application (distribution
in time and space) of ventilation air flow to
reduce cooling loads in buildings

« Ventilative Cooling utilizes the cooling and
thermal perception potential (higher air
velocities) of outdoor air

* In Ventilative Cooling the air driving force can
be natural, mechanical or a combination
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Ventilative cooling is a solution

* Ventilative cooling can be an attractive and energy efficient
passive solution to avoid overheating.

— Ventilation is already present in most buildings through mechanical
and/or natural systems using opening of windows

— Ventilative cooling can both remove excess heat gains as well as
increase air velocities and thereby widen the thermal comfort
range.

— The possibilities of utilizing the free cooling potential of low
temperature outdoor air increases considerably as cooling
becomes a need not only in the summer period.
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Status of Application

» Application of Ventilative cooling for residential buildings is
at a low level
» Itis considered difficult to evaluate
* Few technical solutions available — mainly manual window

opening only very few automated

* Ventilative cooling is a standard solution in offices with
mechanical ventilation
« Designed for IAQ criteria
» Limited benefit due to fan energy use

* Ventilative cooling by natural/hybrid ventilation is known

* But only used in a few cases in offices
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IEA EBC Annex 62
Ventilative Cooling
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Annex Objectives

» To analyse, develop and evaluate suitable methods and tools for
prediction of cooling need, ventilative cooling performance and risk
of overheating in buildings that are suitable for design purposes.

» To give guidelines for integration of ventilative cooling in energy
performance calculation methods and regulations including
specification and verification of key performance indicators.

» To extend the boundaries of existing ventilation solutions and their
control strategies and to develop recommendations for flexible and
reliable ventilative cooling solutions that can create comfortable
conditions under a wide range of climatic conditions.

» To demonstrate the performance of ventilative cooling solutions
through analysis and evaluation of well-documented case studies.




Annex 62 Ventilative Cooling EBC @j

E ; 3 ings and
“‘pO("TH')f‘

Annex Outcome

* Guidelines for energy-efficient reduction of the risk of
overheating by ventilative cooling

* Guidelines for ventilative cooling design and operation in
residential and commercial buildings

* Recommendation for integration of ventilative cooling in
legislation, standards, design briefs as well as on energy
performance calculation and verification methods

* New ventilative cooling solutions including their control
strategies as well as improvement of capacity of existing
systems

* Documented performance of ventilative cooling systems in
case studies
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Annex Organization

e Subtask A: Methods and Tools
e Subtask B: Solutions

e Subtask C: Case Studies
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Energy in Buildings and
Communities Programme

Annex Leadership

Participating countries

— Austria, Belgium, China, Denmark, Finland, Ireland, Italy, Japan,
Netherlands, Norway, Switzerland, UK, USA

* Operating Agent:
— Denmark, represented by Per Heiselberg, Aalborg University
* Subtask A:
— Leader: Switzerland, represented by Fourentzos Flourentzou, ESTIA
— Co-leader: Italy, represented by Annamaria Belleri, EURAC
* Subtask B:
— Leader: Austria, represented by Peter Holzer, IBRI
— Co-leader: Italy, represented by Lorenzo Pagliano, POLIMI
 Subtask C:
— Leader: China, represented by Guogiang Zhang, Hunan University
— Co-leader:
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IEA EBC Annex 62 Seminar
Ventilative Cooling: Using the cooling potential of ventilation to reduce energy use in buildings
17th September 2014, Brunel University, Uxbridge

Monitoring summer indoor
overheating risk and ventilative cooling
behaviour in London homes

Dr Anna Mavrogianni, IEDE, The Bartlett, UCL
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2 | The LUCID project: Overview

Monitoring summer indoor overheating

Exploring summer ventilation behaviour

3 | The AWESOME project: Overview

Modelling the impact of ventilation on indoor overheating

Modelling the impact of ventilation on indoor air quality

4 | Conclusions and future research
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1 Background

Our climate is changing due to - UG k! J olsbly o SOX el tevit
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Overheating in cities will be exacerbated
due to the urban heat island effect.
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1 Background

Indoor overheating in homes
» Growing body of evidence
* Increased research interest
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2 LUCID: Overview

Modelling the local urban climate and its impacts

Arup Outdoor
LSSAT Boom .
ANN model for 77 fixed Yrban canyon red {
temperature stations. e iix:: a:felr-n o:E‘M o
nked to Lon
Features:
: B . - Features:
* Site fic hourl - R
ite spect el fored Y e ~ = *  Air & surface
temperature | ] TT > - - o temperature
| ] el ur
f’t : "IT%»?TTH“ "
| Ld 4o i1/ |
LondUM e QOB e L | | |
Atmospheric model at 1km grid. O o ¢
Features: bz = ADMS
* 1.5m height surface a5 Atmospheric dispersion
temperatures model. Linked to
LondUM
Features:
* Perturbations on
temperature &
humidity

UCL Institute for Environmental Design & Engineering

e 101 London dwellings
of varying morphology
» Convenience sample

—

2 LUCID: Monitoring summer indoor overheating

(UCL staff and students)

e
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e EPC survey
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2 LUCID: Monitoring summer indoor overheating

Full sample N~ A ,( S ,_._'52 o

(June-August): - SIS N\ Tk : :

* The analysis of the monitoring
data indicated that London
homes and, in particular,
bedrooms are already at risk of
indoor overheating during hot
spells under the current
climate.

» There is no strong correlation
between temperature and
distance from the centre.
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2 LUCID: Monitoring summer indoor overheating
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Dwelling type

Sub-sample (hot spell):

e Significant levels of night time overheating were recorded in the main bedrooms.

e Sleep impairment due to temperature rising above the 24 °C threshold might have been caused
in 86% (31 out of 36) of the bedrooms.
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2 LUCID: Exploring summer ventilation behaviour
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2 LUCID: Exploring summer ventilation behaviour
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Sub-sample (hot spell):

e Daytime ‘rapid’ ventilation appears to increase the variability of living room temperatures.

e The effect of night time ventilation cannot be assessed with confidence due to the small sample
of houses that left their windows open during the night (mainly due to security reasons).
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3 AWESOME: Overview

1. Air pollution and meteorology
* measurements
* spatio-temporal models

NO PM, 5 )

X

Oy .

Analyses

3. Time-space epidemiological models
4. Decision analysis

5. Health impact models

occupant exposure

Effect
modification

2. Models of
building
performance
(temperature,
indoor pollutants)

Temperature

» mortality
* morbidity
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3 AWESOME: Modelling summer indoor overheating
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Modelling of London
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3 AWESOME: Modelling summer indoor air quality
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4 Conclusions

London homes already experience hours with temperatures above the recommended
thresholds, even during relatively mild summers.

In the future, such risks are likely to be exacerbated due to climate change and certain
retrofit measures (increased airtightness, internal wall insulation).

No strong correlations between distance from the centre and overheating risk were observed,
which may be an indication that building characteristics and occupant behaviour may
be more important for overheating than the location within the urban heat island.

Natural ventilation alone may not suffice to keep indoor thermal conditions within
acceptable limits and its cooling potential may be further limited due to noise, security and
outdoor air pollution concerns.

Rankings of dwellings based on their propensity to overheat vary as a function of occupancy
patterns, window opening and shading use behaviour.

UCL Institute for Environmental Design & Engineering

4 Ongoing and suggested future research

Carrying out a large-scale summer thermal monitoring study of statistically representative UK
dwellings, potentially including thermal diaries and occupancy sensors, including
information on window size and local wind speeds.

Including a detailed comparison of the static vs. adaptive thermal comfort approach.

Further exploring the complex interrelationships between the indoor thermal environment
and airborne contaminant transport in heat vulnerable urban homes.

Linking markers of exposure to indoor excess temperatures and pollutants with health
markers (morbidity and mortality data) to assess the modifying effect of the indoor
environment.
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Thank youl!
a.mavrogianni@Qucl.ac.uk

Any questions?
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venticool: The international
platform for ventilative cooling

Ventilative Cooling workshop: Using the cooling
potential of ventilation to reduce energy use in
buildings, UK, September 17, 2014
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the international platform for ventilative cooling -
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The platform

Main goal and scope

Main targets

Partners

Dissemination & Communication




Present
situation — Poor
understanding
of ventilative
cooling

The platform WHY?

Present
situation — Poor
understanding
of ventilative
cooling
potentials

The platform WHY?

Good
understanding
and appropriate
use of
ventilative
cooling




The platform WHY?

Present g = Good
situation — Poor - understanding
understanding and appropriate
of ventilative use of
cooling e : ventilative
~ potentials b s cooling

_ o " Publications
Events ¥ Papers, reports,
Conference, ) guidebook
workshops, etc. >

Typical attendance:
>100

” Communication
Webinars,
newsletterand
newsflash, website

inc. workshops,
papers, webinars,
etc. in collaboration
with AlVC and |IEA

The platform WHY?

Reasons behind.

— Ventilative cooling has a great yet largely
unrealised potential in terms of energy
conservation in buildings while providing
adequate indoor air quality and comfort

— Need to increase communication, networking
and awareness raising to mobilise the untapped
energy savings potential




The platform

* Inaugurated in September 2012 to answer the growing
need for international collaboration on ventilative cooling

* Facilitated the programme development of IEA Annex 62
with the organization of key meeting points at workshop and
conferences.

* Key partner of Annex 62 and the European project
QUALICHeCK

* venticool is firmly anchored at international level and
gradually becomes THE international meeting point for
ventilative cooling activities.

Main goal and scope

* The scope of venticool covers natural, mechanical
and mixed-mode ventilation

* The goals:

— Increase communication, networking, knowledge and
awareness at key targets to mobilise the significant energy
saving potential using ventilative cooling
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* Policy makers and standards writers

» Stakeholders organizations (at European and national
level)

* Training centres (front-runners and
associations/networks)

* Designers, engineers, builders, HVAC installers (front-
runners and associations/networks)

 Research and technical centres

Partners

The platform is financially and technically supported by:
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Dissemination & communication

% Conferences

Workshops
0 .
%‘&@‘ Webinars

(9 publications
Social Media
) Wikipedia

Dissemination & communication

(Next steps)

U Conferences:
= 35th AVC- 2" venticool conference, 24-25 September 2014, Poznan
= 36t AIVC conference, Madrid Spain, 2015

O Workshops
= “Ventilative Cooling: Using the cooling potential of ventilation to reduce
energy use in buildings” Brunel University, Kingston Lane, Uxbridge, UK, 17
September 2014
= “QUALICHeCK workshop on sustainable summer comfort technologies”,
Athens, Spring 2016
U Webinars
= 1st Annex 62 webinar, 2014
= 2nd Annex 62 webinar, 2015
= 3rd Annex 62 webinar, 2016
= 4th Annex 62 webinar, 2017




Dissemination & communication

(Next steps)

Publications
= Co-writers of CEN/TC 156 standards
= Position and input for 2"¢ EPBD recast
= REHVA special issue in the framework of Annex 62
= REHVA guidebook
= Proceedings of “ventilative cooling” tracks of AIVC conferences

Articles on ventilative cooling for a special issue of the International Journal of
Ventilation (JV)

Website
Venticool newsletter
= Next issue in December
Social media
* LinkedIn & BUILD UP community
Wikipedia
= Venticool & Ventilative cooling

The platform WHY?

Good
understanding
and appropriate
use of

Present
situation — Poor
understanding

of ventilative

" venticool &=

the international platform for ventilative cooling




Joining venticool

1. As Partner

2. As an individual in venticool club a
discussion forum on ventilative cooling.

If you are interested to join us please contact us
at: info@venticool.eu

o
; iﬁ The IEA project

venticool
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Thank you for your attention!
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» Product overview
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Energy Potential of Phase Change

Sensible heat - 4.2 J/g/°C

125g of ice will cool down 1L of water by 10°C

Q,.cer = 4.2 1/8°C x 1000g x 10 °C = 42000 J
Q= 334 J/8 X 125g = 41750 )
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PCM Classification

PCM

Solid-Liquid

Solid-Solid

v

i . 25/180°C
Organics Inorganic
1/170 °C
el
f ; " salt Hydrates | Organi . .
Paraffin (‘ el ey e Inorganic Organic Polymer
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ORGANICS: SALT HYDRATES:

Advantages: Advantages:
« Stable + Cost
*  Encapsulation »  Sustainable

*  Energy dense

Disadvantages:

Disadvantages: »  Corrosive (plastic & metals)
+  Expensive *  Thermal conductivity
*  Flammable +  Segregation

e Thermal conductivity
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> Easy to retrofit, intelligent thermal mass

» Dissipates heat built up

Melt / Freeze H Heat / Cool
1Kg of PCM 200Kg of Concrete by 1°C
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Passive thermal mass products

» Achievable Heat Transfer Rates L ) Heat transfer he
Building Fabric L P
direction [W/mK]
> Internal Surface Area Walls Horizontal 2.5
. Ceilings Upward 5
» Temperature difference Floor Downward 0.7

> TIME
» Control Strategy

"

—

GLASSXcrystal in its liquid state GLASSXcrystal in its crystal state
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Product Summary
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Ventilation and Storage Concept

Air Handling Unit (AHU)

ﬂ? Monodraught® Coofr.cc WINNER

How it works - CP Delta (2011-2012)
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How it works - CP Nova (Current)

PCM Heat Exchanger

External Air

Direct Ventilation

Direct Ventilation

PCM Heat Exchanger

* HEUILDING
Monodraught® - B
bhc‘lse e

Ceiling Void Installation

* BUILDING
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Delta Unit (2011-2012):

Normal ventilation rate — 100 to 250 |/s
Maximum ventilation rate - 350 I/s
Typical energy usage — 30W to 120W
Thermal energy storage - 8 KWh

Thermal batteries batterles
(energy stored)

Nova Unit (Current):

Normal ventilation rate — 100 to 260 |/s
Maximum ventilation rate - 320 |/s
Typical energy usage — 7W to 80W
Thermal energy storage — 6, 8, 10 KWh

a BUILDING

® :;{ PAANCE Ashden
Monodraught ~ w3
Outdoor Temperature === QOperative temperature (with CP) — = Operative temperature (without CP)
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Temperature [°C]
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Time of Day [h]
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Testing & Modelling
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EBMpapst — AHU Independent tests

£

——AHU_Nova DA30%
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Heat Transfer Modelling
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PCM Panel

» PCM characteristics (SP22A17)

-=-Heating ——Cooling
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PCM characteristics

——Melt (sp22E) —e—Crystallize (sp22E) —a&—Cast Concrete

[ —mMelt (sp22E) - 1 kg —4+—Crystallize (sp22E)- 1kg
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TB Performance Testing — Full Scale

» Measurement Setup
» Controlled airflow and supply air temperature (15°C-28°C)
» Temperature sensors upstream and downstream of the TB
» Surface temperature measured on 6 panels (front & back edges)

=
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TB Performance Testing — Full Scale
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26°C 4 i g R S, fiuc I Ling | i et 3500 Wh
——AirIn
g 24°C ¢ ——AirOut - 3000 Wh
g ~—— PCM panel surface temperature ?
2 3p0¢ = = Cooling Energy (Wh) L 2500 Wh &
E — — Heating Energy (Wh) | E
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TB Performance Testing — Full Scale

. (o] o
» Delivered performance of 1 battery module (15°C - 26°C temperature range)

‘ Air In Air Out ~——PCM Back ———PCM Front - — —Cooling Energy (Measured) (Wh) — - —Heating Energy (Measured) (Wh)
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TB Charging model (Excel tool)

» TB night charging (01:00 — 06:00; 5h) (warm night London):

2 ! . . =2y > AHU: Charging Mode
268 —— J — sey > Fanspeed: 50% (288 L/s)
SONN | | . 2600 > Flow rate: 144 L/s /TB
22 7 5 —_—
] . < . 2400 2
s — - = - 2200 5 > PCM temperature: 25°C = 18°C
% ol \\_ —— im : > Thermal Energy: 3015 Wh
S 14 ! — : 1600
E 12 1T __:;',;? et 1400 E » Thermal Power:
£ ol T | —Are ot | 1200 £ > Start: 952 W
8 N\ - '- s :::r:;“n:']h] looo & > End: 340 W
BN ] 800§ > Average: 603 W over 5h
4 N 400
2 S 200 £ > Power Consumption:
0 ' 0 5h x 87.3W = 436.5 Wh
8 8 8 8 8 8 8 8
3 S 3 =S 3 8 S =
Time [h]
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TB Discharge Model (Excel Tool)

»TB discharge (11:00 — 17:30; 6.5h) (hot day London)
32 0
) ——— - 1 200 » AHU: Cooling Mode
28 | /;___h__. — ~ | -a00 » Fan speed: 42% (230 L/s)
%6 ' I = j$ _ | > Flowrate: 115 /s /TB
24 ] . - i -1000
- B i - -1200 > PCM temperature: 18°C - 25°C
g o ———— o 1400 = | 5 Thermal Energy: -3127 Wh
P 18 ] . RO -1600 £
E 16 -1800 &
§ 14 B -2000 .= | » Thermal Power:
£ o 2200 3 > Start: -563 W
] ﬁ ] 4 -2400 E .
ﬁ | p—— - - -2800 § > Average: -481 W over 6.5h
4 1| —— Air @ outlet I I ::ggg
2 | e oy | “ ) 3400 £ | > Power Consumption:
0 — -3600 6.5h x 57.9W = 376.4 Wh
8 8 3 9 89 3 383 3 3 38 2
Time [h] » EER=(2x3127)/813=7.7
N SBUILDING
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Temperature profile and frequency

» Weather analysis (Excel tool)

—+—Hot days (15%) ~t-Warm Days (41%) Average hourly temperatures -=-Cold Days -+-Cool Days
~ Cool Days (29%) -»-Cold Days (15%) ~t-Warm Days —Hot Days
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TB Discharge Profile (IES)

Fresh Air mode

| | ! . —% of Max Power -100
80% I B — -Cooling Power [W]

Cooling Power [W]

288888888 8
Z SR C S S =
ﬂme{h]_

» Thermal Power:
> Start: -713 W (IES input)
> Thermal Profile 0-100%
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IES Component Tool

(

Coolohase® v [ information MI—|
o
Name §
Exposed Void: Q Monodraught® CDDE%@SPW
CPN4EV
CPNGEV Fascia: CPN8F
CPNBEV
Fascia:
CPNEF
CPN6F
(V] cener
Suspended Ceiling:
CPN4SC
CPN6SC
CPNBSC

Cool-phase is a low energy cooling and ventilation system that creates a comfortable, fresh and healthy indoor "
environment and reduces the running costs of buildings.

Cool-phase uses a thermal energy store utilising a Phase Change Material (PCM) in combination with an intelligently
controlled Air Handling Unit to actively ventilate and cool the building. The Cool-phase system can maintain temperatures
within the comfort zone, while radically reducing energy consumption hy up to 90 %, compared to a conventional cooling
system Unlike caolmg pp hes, Cool-phase uses no making it an sound -

Hz] Product Data Sheet
=l Clickto view: Product Brochure Fascia Product Data Sheet
You will need Adobe Reader, free from Adobe, to open the document.

[ tmport Checked Components | [ cose |
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IES Integration — as ApacheHVAC
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Case study — Notre Dame School Building (London)

About the Case Study:

Two COOL-PHASE systems were installed
in an IT classroom in April 2011. The
classroom (approx. 70 m?) has high internal
heat gains with 30 PCs and an overhead
projector, while partly shaded windows on
two sides (NW & SE) create solar gains.

Two control rooms were chosen in order to

provide a comparison to the performance of the
COOL-PHASE systems; the first was another
IT classroom with 30 PCs and an overhead
projector, resulting in similar internal heat gains.
Due to external gains from SW facing windows,
there was higher external heat loading than the
classroom where COOL-PHASE was installed.
This classroom had a Split Air Conditioning (AC)
system already installed to provide cooling.

The second control room was a Geography
classroom with much lower internal and external
heat loading. This classroom had a single PC
and overhead projector. The room was chosen
as it was located next to the room with the
COOL-PHASE systems and would provide

a baseline to compare performance to.

e To verify the data logger

e The resulting temperature

e All rooms prior to the install used
manually operated windows
to provide natural ventilation.

e Data logging equipment
was installed in each of
these classrooms.

¢ Temperature and CO, levels
were monitored every minute.
The data loggers were
installed in February 2011
during the Spring term so
that the two environments
could be compared before
the COOL-PHASE® low
energy cooling and ventilation
systems were installed.

readings, the temperature
was recorded with a hand
held digital meter in 8
locations around the room.

gradient was measured and
used to identify any local hot or

cold spots within the room.
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Before and After

Temperatures and CO, levels were
monitored during the Spring term
prior to the install to enable the two
IT classrooms to be compared.

The average temperature in both
environments during the Spring term
are very similar. This shows both rooms
have very similar internal heat loading.

The results show that the average
temperatures increased in the
control room slightly between the
Spring and Summer term as can be
expected due to warmer weather.

However the room with the COOL-PHASE
system has not replicated these trends
and instead has seen a significant
reduction in the average temperatures
before and after the install.

The external heat loading in the control
IT classroom is higher than the room
where COOL-PHASE is installed and
this would become a more significant
factor in the Summer term, however
the AC system should be able to
overcome the total heat loading.

Despite the differences between the
rooms, it is clear that the COOL-PHASE
system has had a significant impact

on average temperatures.
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Case study — Notre Dame School Building (London)

A similar pattern can be seen for the
CQ, levels. The results show that
70.0% the control IT classroom had worse
ventilation than the classroom where
COOL-PHASE was installed.

This can be expected as the control

classroom only had windows on one

side; whereas the room where the

[l Sering (Before install COOL-PHASE systems were installed
has windows on two opposite sides of

[l Summer (After install the room allowing cross ventilation.

30.0% |

An improvement in air quality between
the Spring and Summer term

can be explained by the windows
being opened more frequently.

However the results before and after
the install of the COOL-PHASE system
Control IT Classroom COOL-PHASE Classroom shows a very significant reduction

in the number of hours where the

CO, levels exceed 1500 ppm.

% Tirme when 0O, levels>1500ppm

10.0%

0.0% -

levels before and after the install
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Hybrid operation with VRF
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B Mechanical Ventilation (Annual Energy)
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Halifax House, Cressex Business Park,
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Energy Use In Buildings Buildings
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Building designed for outflow through stacks
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Temperature Measurements Buildings
1st floor * North §ide of
the atrium
» East end of the
40 - atrium
» South side of
35 - the atrium
» West end of the
g 30 1 atrium (dark
3 blue line, very
§- 25 | small peak)
05, » Within main
[
20 - . floor
Atrium peak
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exposure to sun
10 T T T T T

1300 130Ul 14-du 14-dul A5-0ul 15-0ul 16-u  xegion near/within
atrium hotter than desk

area under exposed
concrete = benefit of
thermal mass
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Temperature Measurements Buildings
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Temperature Measurements Buildings

23July-14Aug average temperatures

Warm inside
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Temperature Measurements Buildings
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Survey Results
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rating scale- average responses & standard error of the mean
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Can we improve performance?
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Maximising Effectiveness of Thermal Mass Buildings
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Air Flow Results Buildings

*Hot and still day
(06/08/03)

*Fans are operating all day

* All windows
open
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Air Quality
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Required

Measurements show fresh air supply well in excess of minimum

Night Time Operation
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Opportunity for Improvement Buildings

40
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30

25

Julyoutside air temperature. 45 Augustoutside temperature.
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1. Opportunity to use cool air from outside during night
even more effectively to reduce building temperature

2. Reduce window openings during summer day to
maximise benefit of thermal mass
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Belvoir High School

200 -
Internal Temperatures in Belveir High School,
g 180 Classroom &
~N March 3™ -July 1* 2010
T 160
E 140 —
£ 120
§ 100
S 80
S 0
o
E a0
z X
. JJL_;
20 21 22 23 24 25 26 27 28 29
Temperature [°C]
W Classroom 6 M External
BB101 Standards Belvoir High School
120 hours for which T, ,>28°C 0 hours for which T, ,>28°C
(Troom) max = 320(: (Troom) max = 27'5°C
(Troom - Texternal)max =5°C (Troom - Texternal)max =2.3°
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Internal Comfort uildings

The limits of thermal comfort: )
avoiding overheating in
European buildings

Priority School Building Programme

Making sense of the new Priority School Output Specification from the
Education Funding Agency. How is the output specification different
from previous guidelines, how do the standard school designs meet the
output specification and how Breathing Buildings can help you model

the ventilation system energy use in IES.

©Breathing Buildings Ltd.
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Hvbrid Designs
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Breathing

« Natural ventilation low energy
« Exposed thermal mass

* Fan driven ventilation not “free cooling”

©Breathing Buildings Ltd.



Cutting edge natural ventilation

of high-rise buildings
in Japan

OSAKA UNIVERSITY

Hisashi Kotani

Dept. of Architectural Eng.,
Osaka University

Natural ventilation in Japan

Natural ventilation and cross-ventilation
have been noticed as an important issue
in Japan for long time because of its hot
and humid climate in summer time.

Researches on natural ventilation and
cross-ventilation has been conducted in

the early days in Japan.

Architectural Institute of Japan (AlJ) was
founded in 1886.
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Natural ventilation in Japan

OSAKA UNIVERSITY

The first volume of AlJ Transactions, 1936,

2 papers for ventilation and cross-ventilation,

1 for acoustics

4 for daylight in the field of building environment
Volume 5 of AlJ Transactions in the next year,
1937

3 papers for ventilation and cross-ventilation,

2 for moisture,

1 for thermal comfort

3 for acoustics
‘ventilation path’ and ‘cross-ventilation’ were titled in
the papers in Volume 5.

Natural and Cross ventilation research in Japan
AlJ Pamphlet Vol.3, No.7 NG

(1930)
“Ventilation and cooling”

exactly the same concept REL

with “ventilative cooling” Il | #= &S &
| i

Main discussions are % ’L

standard of ventilation
rate and calculation
theory.
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Natural and Cross ventilation rese
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arch i

apan
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AlJ Design Planning
Pamphlet Vol.3
(1957)

“Indoor climate
design”

Cross-ventilation
designs were
discussed.
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Natural research in Japan Q
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Some results by Japanese researchers in
the early days are useful even at the
present days but almost all papers were
written in Japanese unfortunately.

Brand-new book

KHEEDHD
Published by Natural i
ventilation design WG, NIRTYT
AlJ (Architectural Institute ArERER
of Japan), 2013
Focuses on non- Natural Ventilation
Design HandBook

residential buildings,

company offices, public

offices, school buildings...

Now preparing to

translate to English _—
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Case studies

OSAKA UNIVERSITY
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TwoO cases

using natural ventilation system

CASE 1: Building outline

Location : Osaka, Japan
41-storied (GL+195m)
high-rise office building
106,000m? in total floor
Dec. 2004 completed




Building outline
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System outline : Task ambient AC mode

OA

OSAKA UNIVERSITY

EA

il |

%&% . _ , WUH - I

‘111' q]: M X " LIHE[’ \'/ Ambient AHU e

. = /JT ol

Exh it ; i
S Ambient zone (28 degC) Ambient outlet

Task zone (26 degC) Task outlet g -_'\8.

_§|_@

Task AHU

Task ambient AC mode

In summer time, task and ambient zone is
achieved by under floor air supply (for task
zone) and ceiling outlet (for ambient zone)




System outline . Natural ventilation mode

OSAKA UNIVERSITY

Natural ventilation mode (Spring and fall)

Il EA
\%LE Natural ventilation outlet ot
> : / I | I =1
Natural > ' " ' VAV
ventilation | y:rf‘?ilr:tlion \ _? MD
intake : (16 to 25 degC) Ambient zone (28 degC)  Exhaust @
' . Task zone (26 degC) @ | ImD
| ] L] Task outlet —
11 M IEIEQ Ambient AHU
! V! \ L
. . — e (G

Task AHU

Spring and Fall, ambient zone is naturally
ventilated if possible (conditions are pressure
difference, outside air temperature, humidity

and enthalpy).

System outline

Occupants can select
‘directional’ or ‘diffusive’
airflow and flow rate of
task outlets.

diffusion mode:

: Selective task flow

OSAKA UNIVERSITY

Directional Directional

air flow/
diffusive

Diffusive

air flow
b s OUtlet
Operation

indicator

Air volume —
change switch

—— Control unit

air flow outlet

(swirl type)




System outline : Natural ventilation outlet

Air outlets surround office room.

Shape of air outlets are well-
designed to guide the air to
interior by Coanda effect.

Challenge to use Wind-induced uzps
natural ventilation in high-rise <=2
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Controlling system

OSAKA UNIVERSITY

1.Natural ventilation system begins working when:

1)Indoor-outdoor pressure difference 50 Pa or less

2) Outside air temperature: 18°C or more

3) Outside air humidity: 90% or less

4) Outside air enthalpy: Less than indoor enthalpy
5) Room temperature:

—2°C= Preset temperature <+1°C: Partly open
+1°C= Preset temperature <+3 °C: Fully open
2.Task/ambient air-conditioning system control system
1)Task air-conditioning:
Constant supply air temperature and static pressure control
2)Ambient air-conditioning:
VAV control to constant indoor temperature

Temperature['C]

Opening ratio[%]

Room temperature[°C]

9 years ago: Natural ventilation performance in a week

Most frequent wind direction

WSW  WNW N WNW  WSW NE SW OSAKA UNIVERSITY
20 - Outside wind velocity-, /T Outside air temperature 6 )
e e A | 4+<  About 50% of
10 | T 7] © ° °
: | 1 : 5 natural ventilation
Outdoor air temperature and external wind velocity 0 Openings were
100 [b
80 [ £ opened.
60
40 T
20 ' emperature
0 Nual pening open ratio dlfference between
25 the east D) and the
24 west @ was 0.2°C
23 vt
vy = on an average.
22 ‘
|

21 '
10/24 10/25 10/26 10/27 10/28 10/29 10/30
Indoor temperature
(Natural ventilation was available only on 30th.)




9 years ago: Natural ventilation performance in a year

OSAKA UNIVERSITY

oor]

< =0 A278 Open time 120 =
5 250 = 100 £
= 200 /\//—(blooling heat extraction 80 g
= — y natural ventilation L
T 150 [ X 60 O
s A \fCooIing load of whole floor =
= 100 40
o 51 o
g 50 20 o
o 0 - I\ 9 ' _Q__J__.Z__ 0 =
06 07 S

4 5 6 7 8 9 10 11 12 1 2 3 [month] ¢

The annual open time was 918 hours.
Natural ventilation could reduce cooling load on a
typical floor by 13.3%.

9 years ago in the planning stage

OSAKA UNIVERSITY

Calculation of natural ventilation rate for 16
wind directions using wind pressure coefficient
obtained by wind tunnel tests.

Measurement of natural ventilation rate in the
real building.

CFD analysis using measured ventilation rates
as boundary conditions.




Natural ventilation

openings
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CFD Analysis using measured data

analyzed area

OSAKA UNIVERSITY

* /"h
N \\ ceiling exhaust

natural ventilation opening lighting at ceiling | - velocity definition

ceiling plan

CFD Analysis using measured data

OSAKA UNIVERSITY

N — — =
-_ = I
= f‘ﬁf—};
Il B
natural ventilation opening| | floor outlet (diffuse vertically) heat load by person
(diffuse horizontally) ~ heat load by laptop PC /.o
- = : E _110cm
/
/
/ / 20cm
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CFD Results : Wind velocities along the ceili

OSAKA UNIVERSITY

West wind pr

West wind: Supplying air flows from west-side
openings to north-side along the ceiling , a part
of flow cannot reaches the interior zone.

North wind: Well supplied to the whole room.

Flow visualization vs CFD analysis

OSAKA UNIVERSITY




Flow visualization vs CFD analysis

Floor outlet 0.76m/s

OSAKA UNIVERSITY

0.25m/s

Daily average outdoor air temperature[°C]

Pollen measurement

28

24

£
£y

20 118°C 2 | very
large

1)
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Pollen quantity[pieces/cm?/day]

16 | y\—Average outdoor—
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rnom (o]
12— 40
Large
8+ +Rather 20
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4 Pollen quantity ; ' small
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month/day
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¥’ 30th floor Roof  30th floor Roof 30th floor Roof  30th floor Roof
Holidays Weekdays Holidays Weekdays

Natural ventilation No Natural ventilation

Pollen on Holidays and weekdays

Pollen quantity[pieces/cm?/h]

OSAKA UNIVERSITY

- Pollen increases
in the half of April.

- Pollen carried by
people is larger
than those coming
trough natural
ventilation
openings.




Noise level measurement

OSAKA UNIVERSITY

-Natural ventilation openings can reduce noise level by
20dB(A) when opened, and 25dB(A) when closed.
-Noise entering from the outside does not spoil working

conditions.
80 Outdoor Outdoor
= a| =
— 60 o
350 11 1 L 4L L 0 Genefalleyelin office]
$ 40 & A%
R A | @
(o)
z 30 & L . .
20 Indoar Indoar
East West |[East North West East West |[East North West
30th floor 15th floor 30th floor 15th floor
Openings : Open Openings : Close
remarks

OSAKA UNIVERSITY

Wind-induced natural ventilation in high-rise
office building was achieved.

Characteristics of supplying the fresh air from
natural ventilation opening depends on the wind
direction.

CFD analysis for natural ventilated room using
measured data or calculated flow rate by wind
pressure coefficient is useful.

Some measurements are conducted concerning
the estimating problem when used NV system
but it has no problem.




more..

OSAKA UNIVERSITY

More interesting measurements and analyses
have already conducted.

Long-term measurement of natural ventilation by
pressure differences, we can use the “big data” of
BEMS.

Mean age of air for task ambient AC mode and
natural ventilation mode.

Domination or contribution ratio of each outlets (task,
ambient and natural ventilation opening).

Modeling of outlets in CFD to improve the accuracy.

Now, 9 years after...

OSAKA UNIVERSITY

It still works well.

Social demand for saving electricity is very strong
after earthquake and nuclear accident 2011.

Opening time [hour/ye_ar]

2005 2006 2007 2008 2009 2010 2011 2012 2013




Now, 9 years after...

OSAKA UNIVERSITY

Night purge by natural ventilation also works in
the night of summer time.

Opening time [hour/month]

300

250

200

150

100

50

0

Room 35
30
25
20

15

temperature [deg C]

10
N i E | .

1 2 3 4 5 6 7 8 9 10 11 12

month

Now, 9 years after...

Not exactly NV but hybrid ventilation system.

OSAKA UNIVERSITY

Most of the cooling load is removed by natural

ventilation.
20
g 15 NV
'§ 10 /
o0 AC
"—E 5 / (ambient AC
S from ceiling)

0

01234567 8 91011121314151617181920212223
Daily change of cooling load (one day in October, 2013)




CASE 2: Building outline

OSAKA UNIVERSITY

Location : Osaka, Japan
4 buildings, 600,000m? in total floor
Feb. 2013 completed, brand-new bldg.

apartment

CASE 2: Building outline

OSAKA UNIVERSITY

Many sustainable technologies are used.
Different types of natural ventilation.

Original naming and send messages and visualization of
technologies to the people.

wind-induced l buoyancy-induced | buoyancy-induced | wind-induced
“sky slit” “center void” “corner void” “air i_ntake”




CASE 2: Building outline |named “air intake”




CASE 2: Building outline

OSAKA UNIVERSITY

CASE 2: “corner void” type

OSAKA UNIVERSITY

Occupants can select to use NV or not.
if YES, move to Full NV mode (NV)

If NO, move to three mode depending on control conditions.
Hybrid mode (HV)
Directly cooling by outdoor air (OA)
Full AC mode (AC)

NV HV OA
Outdoor temp. 10 — 20 degC Over 18 deg C 10 — 24 degC
Select by occupants
Outdoor RH Under 90 %RH Under 90 %RH
Over 7.8 deg C
in Dew temp

Outdoor air velocity Under 15m/s (controlled by pressure differences)

enthalpy Outdoor < Indoor




3 way moving device for NV opening

OSAKA UNIVERSITY
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3 way moving device for NV opening
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3 way moving device for NV opening
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Hybrid (HV) and Natural ventilation (NV) mode




Measurements and calculations.

OSAKA UNIVERSITY

7 49m

Annex 62 pilot buildings (2012, Tokyo)
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A college building (2008, Kagawa), using staircases

OSAKA UNIVERSITY
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College building (2008, Kobe), shape of the chimney
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remarks Q
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We have many interesting buildings in Japan.

Natural ventilation and hybrid ventilation
technologies are developed in these 10 years.

Calculation in the design stage is enuogh.

Simple long-term performance evaluation
(commissioning) is needed.

The measurement of ventilation rate (long-term,
simple, toughness..) is still the problem.
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